10/09 - Fourier Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
|<math>\left \langle e^{j2\pi n t/T} \mid e^{j2\pi m t/T} \right \rangle</math>
|<math>\left \langle e^{j2\pi n t/T} \mid e^{j2\pi m t/T} \right \rangle</math>
|<math>=\int_{-\infty}^{\infty}e^{j2\pi n t/T} e^{-j2\pi m t/T}\,dt</math>
|<math>=\int_{-\infty}^{\infty}e^{j2\pi n t/T} e^{-j2\pi m t/T}\,dt</math>
|
|-
|-
|
|
|<math>=\int_{-\infty}^{\infty}e^{j2\pi (n-m) t/T}\,dt</math>
|<math>=\int_{-\infty}^{\infty}e^{j2\pi (n-m) t/T}\,dt</math>
|
|-
|
|<math>=\int_{-T/2}^{T/2}e^{j2\pi (n-m) t/T}\,dt</math>
|Assuming the function is perodic with the period T
|-
|
|<math>=T\delta_{m,n}\,\!</math>
|
|}
|}
*This is undefined due to the limits. The notes say that the integral = T, but no limits were defined. You would only know to do -T/2 to T/2 if you knew the function was periodic with period T.


==Fourier Transform==
==Fourier Transform==

Revision as of 12:56, 17 November 2008

Assuming the function is perodic with the period T

Fourier Transform