|
|
Line 57: |
Line 57: |
|
|- |
|
|- |
|
|<math>F^{-1}[F[x(t)]]\,\!</math> |
|
|<math>F^{-1}[F[x(t)]]\,\!</math> |
|
|<math>=\int_{-\infty}^{\infty}\left [ \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}dt\right ]e^{j2\pi ft} df</math> |
|
|<math>=\int_{-\infty}^{\infty}\left [ \int_{-\infty}^{\infty} x(\lambda) e^{-j2\pi f\lambda}d\lambda\right ]e^{j2\pi ft} df</math> |
|
⚫ |
|<math>=\int_{-\infty}^{\infty}X(f) e^{j2\pi ft} df</math> |
|
|
|<math>=x(t)\,\!</math> |
|
|- |
|
|- |
|
| |
|
| |
⚫ |
|<math>=\int_{-\infty}^{\infty}X(f) e^{j2\pi ft} df</math> |
|
|
|- |
|
|
| |
|
| |
|
|
|<math>=\int_{-\infty}^{\infty}x(\lambda) \int_{-\infty}^{\infty}e^{j2\pi f(t-\lambda)} df d\lambda</math> |
|
|
|<math>=\int_{-\infty}^{\infty}x(\lambda) \delta(t-\lambda) d\lambda</math> |
|
|<math>=x(t)\,\!</math> |
|
|<math>=x(t)\,\!</math> |
|
|} |
|
|} |
Revision as of 14:54, 17 November 2008
|
|
|
|
|
|
|
|
Assuming the function is perodic with the period T
|
|
|
|
Fourier Transform
Remember from 10/02 - Fourier Series
If we let
|
|
|
|
Remember
|
|
|
|
|
Definitions
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|