HW 05: Difference between revisions
Jump to navigation
Jump to search
New page: Find the following Fourier Transforms *<math>F[e^{j \omega_0 t}]</math> *<math>F[\cos {\omega_0 t}]\,\!</math> *<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> *<math>F[\sin... |
No edit summary |
||
Line 4: | Line 4: | ||
*<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> | *<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> | ||
*<math>F[\sin{\omega_0 t}]\,\!</math> | *<math>F[\sin{\omega_0 t}]\,\!</math> | ||
==Solutions== | |||
{| border="0" cellpadding="0" cellspacing="0" | |||
|- | |||
|<math>F[e^{j \omega_0 t}]</math> | |||
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math> | |||
|- | |||
| | |||
|<math>=\int_{-\infty}^{\infty} e^{j (\omega_0-\omega) t}dt</math> | |||
|- | |||
| | |||
|<math>=\delta(\omega_0-\omega)\,\!</math> | |||
|} |
Revision as of 16:28, 17 November 2008
Find the following Fourier Transforms