HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
No edit summary
Fonggr (talk | contribs)
No edit summary
Line 16: Line 16:
|
|
|<math>=\delta(\omega_0-\omega)\,\!</math>
|<math>=\delta(\omega_0-\omega)\,\!</math>
|-
|<math>F[\cos {\omega_0 t}]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math>
|-
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )2e^{-j \omega t} dt</math>
|-
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} 2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t} dt</math>
|-
|
|<math>=\int_{-\infty}^{\infty} e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}</math>
|-
|
|<math>=\delta(\omega_0-\omega) + \delta(\omega_0+\omega)\,\!</math>
|}
|}

Revision as of 16:40, 17 November 2008

Find the following Fourier Transforms

  • F[ejω0t]
  • F[cosω0t]
  • F[αnej2πnt/T]
  • F[sinω0t]

Solutions

F[ejω0t] =ejω0tejωtdt
=ej(ω0ω)tdt
=δ(ω0ω)
F[cosω0t] =ejω0t+ejω0t2ejωtdt
=12(ejω0t+ejω0t)2ejωtdt
=122ej(ω0ω)t+2ej(ω0+ω)tdt
=ej(ω0ω)t+ej(ω0+ω)t
=δ(ω0ω)+δ(ω0+ω)