HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
|
|
|<math>=\delta(\omega_0-\omega)\,\!</math>
|<math>=\delta(\omega_0-\omega)\,\!</math>
|-
|<math>F[\cos {\omega_0 t}]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math>
|-
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )2e^{-j \omega t} dt</math>
|-
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} 2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t} dt</math>
|-
|
|<math>=\int_{-\infty}^{\infty} e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}</math>
|-
|
|<math>=\delta(\omega_0-\omega) + \delta(\omega_0+\omega)\,\!</math>
|}
|}

Revision as of 15:40, 17 November 2008

Find the following Fourier Transforms

Solutions