HW 05: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
| |
| |
||
|<math>=\delta(\omega_0-\omega)\,\!</math> |
|<math>=\delta(\omega_0-\omega)\,\!</math> |
||
|- |
|||
|<math>F[\cos {\omega_0 t}]\,\!</math> |
|||
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math> |
|||
|- |
|||
| |
|||
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )2e^{-j \omega t} dt</math> |
|||
|- |
|||
| |
|||
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} 2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t} dt</math> |
|||
|- |
|||
| |
|||
|<math>=\int_{-\infty}^{\infty} e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}</math> |
|||
|- |
|||
| |
|||
|<math>=\delta(\omega_0-\omega) + \delta(\omega_0+\omega)\,\!</math> |
|||
|} |
|} |
Revision as of 15:40, 17 November 2008
Find the following Fourier Transforms