|
|
Line 54: |
Line 54: |
|
|} |
|
|} |
|
==Examples== |
|
==Examples== |
|
⚫ |
{| border="0" cellpadding="0" cellspacing="0" |
|
⚫ |
|
|
⚫ |
|<math>\int_{-\infty}^{\infty}e^{j2\pi ft}e^{-j2\pi f\lambda}df</math> |
|
⚫ |
|<math>=\left\langle e^{j2\pi ft}\mid e^{j2\pi ft}\right\rangle_f</math> |
|
⚫ |
|<math>=\delta(t-\lambda)\,\!</math> |
|
⚫ |
|
|
⚫ |
|<math>\int_{-\infty}^{\infty}e^{j2\pi tf}e^{-j2\pi tf_0}dt</math> |
|
⚫ |
|<math>=\left\langle e^{j2\pi tf}\mid e^{j2\pi tf_0}\right\rangle_t</math> |
|
⚫ |
|<math>=\delta(f-f_0)\,\!</math> |
|
⚫ |
|
|
|
|
|
{| border="0" cellpadding="0" cellspacing="0" |
|
{| border="0" cellpadding="0" cellspacing="0" |
|
|- |
|
|- |
Line 75: |
Line 86: |
|
|
|
|
|
===Sifting property of the delta function=== |
|
===Sifting property of the delta function=== |
|
|
|
⚫ |
{| border="0" cellpadding="0" cellspacing="0" |
|
⚫ |
|
|
⚫ |
|<math>\int_{-\infty}^{\infty}e^{j2\pi ft}e^{-j2\pi f\lambda}df</math> |
|
⚫ |
|<math>=\left\langle e^{j2\pi ft}\mid e^{j2\pi ft}\right\rangle_f</math> |
|
⚫ |
|<math>=\delta(t-\lambda)\,\!</math> |
|
⚫ |
|
|
⚫ |
|<math>\int_{-\infty}^{\infty}e^{j2\pi tf}e^{-j2\pi tf_0}dt</math> |
|
⚫ |
|<math>=\left\langle e^{j2\pi tf}\mid e^{j2\pi tf_0}\right\rangle_t</math> |
|
⚫ |
|<math>=\delta(f-f_0)\,\!</math> |
|
⚫ |
|
|
Revision as of 17:09, 17 November 2008
|
|
|
|
|
|
|
|
Assuming the function is perodic with the period T
|
|
|
|
Fourier Transform
Remember from 10/02 - Fourier Series
If we let
|
|
|
|
Remember
|
|
|
|
|
Definitions
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sifting property of the delta function