HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 8: Line 8:
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|-
|-
|<math>F[e^{j \omega_0 t}]</math>
|<math>F\left[e^{j \omega_0 t}\right]</math>
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math>
|-
|-
Line 20: Line 20:
|<math>=2\pi \delta(\omega_0-\omega)\,\!</math>
|<math>=2\pi \delta(\omega_0-\omega)\,\!</math>
|-
|-
|<math>F[\cos {\omega_0 t}]\,\!</math>
|<math>F\left[\cos {\omega_0 t}\right]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math>
|-
|-
Line 35: Line 35:
|<math>=\pi\delta(\omega_0-\omega) + \pi\delta(\omega_0+\omega)\,\!</math>
|<math>=\pi\delta(\omega_0-\omega) + \pi\delta(\omega_0+\omega)\,\!</math>
|-
|-
|<math>F[\sin{\omega_0 t}]\,\!</math>
|<math>F\left[\sin{\omega_0 t}\right]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math>
|-
|-
Line 50: Line 50:
|<math>=-j\pi\delta(\omega_0-\omega) + j\pi\delta(\omega_0+\omega)\,\!</math>
|<math>=-j\pi\delta(\omega_0-\omega) + j\pi\delta(\omega_0+\omega)\,\!</math>
|-
|-
|<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math>
|<math>F\left[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}\right]</math>
|<math>=\int_{-\infty}^{\infty} \left (\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T} \right )e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty} \left (\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T} \right )e^{-j \omega t}dt</math>
|-
|-

Revision as of 20:27, 23 November 2008

Find the following Fourier Transforms

Solutions