Assignment: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
Begining with a Fourier Series: |
Begining with a Fourier Series: |
||
<math>x(t) = x(t+T) = \sum_{n=- \infty}^{\infty} \alpha _n e^{\frac{j2 \pi nt}{T}}</math> |
(1) <math>x(t) = x(t+T) = \sum_{n=- \infty}^{\infty} \alpha _n e^{\frac{j2 \pi nt}{T}}</math> |
||
where |
where |
||
Line 13: | Line 13: | ||
We then take the limit of a Fourier series as its period T approaches infinity: |
We then take the limit of a Fourier series as its period T approaches infinity: |
||
<math>\lim_{T \to \infty}\sum_{n=-\infty}^\infty (\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t^')e^{\frac{-j2\pi nt^'}{T}}dt^')e^{\frac{j2\pi nt}{T}}\!</math> |
(2)<math>\lim_{T \to \infty}\sum_{n=-\infty}^\infty (\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t^')e^{\frac{-j2\pi nt^'}{T}}dt^')e^{\frac{j2\pi nt}{T}}\!</math> |
||
In order to evaluate this limit we need the following relationships: |
In order to evaluate this limit we need the following relationships: |
||
Line 54: | Line 54: | ||
We can now write out the following: |
We can now write out the following: |
||
<math>x(t) = \lim_{T \to \infty} \left[ \sum_{n=- \infty}^{\infty} \left(\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{- \frac{j2 \pi nt'}{T}} \,dt' \right) e^{\frac{j2 \pi nt}{T}} \right] </math> |
(3)<math>x(t) = \lim_{T \to \infty} \left[ \sum_{n=- \infty}^{\infty} \left(\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{- \frac{j2 \pi nt'}{T}} \,dt' \right) e^{\frac{j2 \pi nt}{T}} \right] </math> |
||
which can also be written as: |
which can also be written as: |
||
<math>x(t) =\int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty} \,x(t') e^{-j2 \pi ft'} \,dt' \right) e^{j2 \pi tf} \,df</math> |
(4)<math>x(t) =\int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty} \,x(t') e^{-j2 \pi ft'} \,dt' \right) e^{j2 \pi tf} \,df</math> |
||
using, |
using, |
||
Line 66: | Line 66: | ||
we now have |
we now have |
||
<math>\,X(f) = \int_{-\infty}^{\infty} \,x(t') e^{-j2 \pi ft'} \,dt' |
(5)<math>\,X(f) = \int_{-\infty}^{\infty} \,x(t') e^{-j2 \pi ft'} \,dt' |
||
</math> |
</math> |
||
We can now relate a signal in the time domain to a signal in the frequency domain. Using vector notation we can show this relationship as such: |
|||
<table> |
|||
<tr> |
|||
<td width=100><math>\,X(f) = \int_{-\infty}^{\infty} \,x(t) e^{-j2 \pi ft} \,dt</math></td> |
|||
<td width=100 align="center"><math>\equiv</math></td> |
|||
<td width=100><math>\langle x(t) | e^{j2 \pi tf} \rangle </math></td> |
|||
<td width=200><math>\,x(t) \mbox{ projected onto } e^{j2 \pi tf}</math></td> |
|||
</tr> |
|||
<tr> |
|||
<td><math>\,x(t) = \int_{-\infty}^{\infty} \,X(f) e^{-j2 \pi ft} \,df</math></td> |
|||
<td align="center"><math>\equiv</math></td> |
|||
<td><math>\langle X(f) | e^{j2 \pi tf} \rangle </math></td> |
|||
<td><math>\,x(f) \mbox{ projected onto } e^{j2 \pi tf}</math></td> |
|||
</tr> |
|||
</table> |
|||
Where, |
|||
<math><x(t)|e^{j2\pi ft}>\!</math> Is the <b>Fourier transform</b>, or <math>\mathcal{F}[x(t)]\!</math><br> |
|||
<math><X(f)|e^{j2\pi ft}>\!</math> Is the <b>inverse Fourier transform</b>, or <math>\mathcal{F}^{-1}[X(f)]\!</math><br> |
|||
Now we can use our new tool, the Fourier transform on equation (2) to give us the following: |
|||
<table> |
|||
<tr> |
|||
<td width=100> |
|||
<math>\int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty} \,x(t') e^{-j2 \pi ft'} \,dt' \right) e^{j2 \pi tf} \,df</math> |
|||
</td> |
|||
<td width=100 align="center"> |
|||
<math>\equiv</math> |
|||
</td> |
|||
<td width=100> |
|||
<math>\int_{- \infty}^{\infty} \,x(t') \left( \int_{-\infty}^{\infty} e^{j2 \pi f(t-t')} \,df \right) \,dt'</math> |
|||
</td> |
|||
</tr> |
|||
</table> |
|||
Notice |
|||
<math>e^{j2 \pi f(t-t')} \equiv \delta (t-t')</math> |
|||
Similarly, |
|||
<table> |
|||
<tr> |
|||
<td width=100> |
|||
<math>\int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty} \,X(f') e^{j2 \pi f't} \,dt' \right) e^{-j2 \pi tf} \,df</math> |
|||
</td> |
|||
<td width=100 align="center"> |
|||
<math>\equiv</math> |
|||
</td> |
|||
<td width=100> |
|||
<math>\int_{- \infty}^{\infty} \,X(f') \left( \int_{-\infty}^{\infty} e^{j2 \pi t(f'-f)} \,df \right) \,dt'</math> |
|||
</td> |
|||
</tr> |
|||
</table> |
|||
Again, notice |
|||
<math>e^{j2 \pi f(f'-f)} \equiv \delta (f'-f) = \delta (f-f')</math> |
|||
Both the time-domain and frequency domain have non-zero integrals when |
|||
<math> \,t = \,t' \mbox{ and } \,f = \,f'</math> respectively. |
Latest revision as of 13:58, 15 October 2009
Summery of the class notes from Oct. 5:
What if a periodic signal had an infinite period? We would no longer be able to tell the difference between it and a non periodic signal. We can use this property to look at signals that do not have a period (an observable one at least).
Begining with a Fourier Series:
(1)
where
We then take the limit of a Fourier series as its period T approaches infinity:
(2)
In order to evaluate this limit we need the following relationships:
|
|
|
|
|
|
|
|
|
We can now write out the following:
(3)
which can also be written as:
(4)
using,
we now have
(5)
We can now relate a signal in the time domain to a signal in the frequency domain. Using vector notation we can show this relationship as such:
Where,
Is the Fourier transform, or
Is the inverse Fourier transform, or
Now we can use our new tool, the Fourier transform on equation (2) to give us the following:
|
|
|
Notice
Similarly,
|
|
|
Again, notice
Both the time-domain and frequency domain have non-zero integrals when respectively.