Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br>
[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br>
Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>
'''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>'''
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>

Revision as of 20:29, 17 October 2009

Max Woesner

Find
Recall , so
Also recall ,so
Now
So


Nick Christman

Find

To begin, we know that

But recall that


Because of this definition, our problem has now been simplified significantly:


Therefore,