Homework Four: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
----
----


[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
'''Find <math>\mathcal{F}[10^{t}g(t)e^{j2 \pi ft_{0}}]</math><br/>'''
1. '''Find <math>\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt \right] </math><br/>'''


To begin, we know that<br/>
To begin, we know that<br/>


<math>
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0}e^{-j2 \pi ft}\,dt = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi f(t_{0}-t)}\,dt</math>
\mathcal{F} \left[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt
</math>
<br/>


After some factoring and combinting of like terms we get:
But recall that <math>\int_{-\infty}^{\infty}e^{j2 \pi f(t_{0}-t)}df \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math>


<br/>
The following needs to be fixed, because the previous thing (just above this) which we just fixed wasn't an identity. Hint: <math>10^{t}</math> is related to <math>e^{t}</math>
<math>
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt
</math>
<br/>


But recall that
Because of this definition, our problem has now been simplified significantly: <br/>
<math>\int_{- \infty}^{\infty}e^{j2 \pi f(t_{0}-t)} \,dt \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math>



<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)</math> <br/>
Because of this definition (and some "math magic") our problem has been simplified significantly: <br/>

<math>
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)
</math>
<br/>


Therefore,
Therefore,


<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math>
<math> \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math>

Revision as of 12:41, 31 October 2009

Fourier Transform Properties


Nick Christman

1. Find

To begin, we know that


After some factoring and combinting of like terms we get:



But recall that


Because of this definition (and some "math magic") our problem has been simplified significantly:


Therefore,