Homework Four: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
---- |
---- |
||
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> |
|||
'''Find <math>\mathcal{F}[10^{t}g(t)e^{j2 \pi ft_{0}}]</math><br/>''' |
1. '''Find <math>\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt \right] </math><br/>''' |
||
To begin, we know that<br/> |
To begin, we know that<br/> |
||
<math> |
|||
⚫ | |||
⚫ | |||
⚫ | |||
</math> |
|||
<br/> |
|||
After some factoring and combinting of like terms we get: |
|||
⚫ | |||
<br/> |
|||
The following needs to be fixed, because the previous thing (just above this) which we just fixed wasn't an identity. Hint: <math>10^{t}</math> is related to <math>e^{t}</math> |
|||
<math> |
|||
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] |
|||
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt |
|||
</math> |
|||
<br/> |
|||
But recall that |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
<math> |
|||
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] |
|||
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0) |
|||
</math> |
|||
<br/> |
|||
Therefore, |
Therefore, |
||
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math> |
<math> \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math> |
Revision as of 12:41, 31 October 2009
Nick Christman
1. Find
To begin, we know that
After some factoring and combinting of like terms we get:
But recall that
Because of this definition (and some "math magic") our problem has been simplified significantly:
Therefore,