Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br>
[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br>
'''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>'''
1.  '''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>'''
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0)+ \frac{1}{2}G(f+f_0)\!</math><br>
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0)+ \frac{1}{2}G(f+f_0)\!</math><br>
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math>
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br>
2.  '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g^*(t) h(t) dt\bigg]\!</math><br>'''


----
----

Revision as of 18:35, 19 October 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find [cos(w0t)g(t)]
Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt
Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt
Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)
So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]

2. Find [g*(t)h(t)dt]


Nick Christman

Find [10tg(t)ej2πft0]

To begin, we know that

[10tg(t)ej2πft0]=10tg(t)ej2πft0ej2πftdt=10tg(t)ej2πf(t0t)dt

But recall that ej2πf(t0t)δ(t0t) or δ(tt0)


Because of this definition, our problem has now been simplified significantly:

[10tg(t)ej2πft0]=10tg(t)δ(tt0)dt=10t0g(t0)

Therefore,

[10tg(t)ej2πft0]=10t0g(t0)



Joshua Sarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθ+ejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0t+ej2πf0t]g(t)ej2πftdt

Now integrating gives us,

1j2[ej2πf0t+ej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=1j2G(ff0)+1j2G(f+f0)


So we now have the identity,

[cos(w0t)g(t)]=1j2[G(ff0)+G(f+f0)]

orr rather

[cos(w0t)g(t)]=12j[G(ff0)G(f+f0)]

Reviewed by Max