User talk:Gregory.peterson: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
=Using the Laplace Transform to solve a spring mass system that is critically damped= |
|||
==Problem Statement== |
|||
<math>m\ddot{x}+b\dot{x}-k(f-x)=0</math> |
|||
An 98 Newton weight is attached to a spring with a spring constant k of 5 N/m. |
|||
The spring is stretched 4 m and rests at its equilibrium position. |
|||
It is then released from rest with an initial upward velocity of 2 m/s. |
|||
The system contains a damping force of 2 times the initial velocity. |
|||
==Solution== |
|||
<math>\ddot{x}+\frac{b}{m}\dot{x}+\frac{k}{m}x=\frac{k}{m}f</math> |
|||
===Things we know=== |
|||
<math>m=\frac{98}{9.81}</math> |
|||
<math>\text {k=40}\,</math> |
|||
<math>\text {Damping constant C=40}\,</math> |
|||
<math>\text {x(0)=0}\,</math> |
|||
<math>\dot{x}(0)=-4</math> |
|||
<math>\text {Standard equation: }\,</math> |
|||
<math>m\frac{d^2x}{dt^2}+C\frac{dx}{dt}+khx=0</math> |
|||
===Solving the problem=== |
|||
<math>\text {Therefore the equation representing this system is.}\,</math> |
|||
<math>\frac{98}{9.8} \frac{d^2x}{dt^2}=-40x-40\frac{dx}{dt}</math> |
|||
<math>\text {Now we put the equation in standard form}\,</math> |
|||
<math>\frac{d^2x}{dt^2}+\frac{40}{10}\frac{dx}{dt}+\frac{40}{10}x=0</math> |
|||
<math>\text {Now that we have the equation written in standard form we need to send}\,</math> |
|||
<math>\text {it through the Laplace Transform.}\,</math> |
|||
<math>\mathcal{L}[\frac{d^2x}{dt^2}+\frac{40}{10}\frac{dx}{dt}+\frac{20}{5}x]</math><br /><br /> |
|||
<math>\text {And we get the equation (after some substitution and simplification)}.\,</math> |
|||
<math>\mathbf s^2 {X}(s)+4\mathbf s{X}(s)+4\mathbf{X}(s)=-4</math><br /><br /> |
|||
<math>\mathbf {X}(s)(s^2+4s+4)=-4</math><br /><br /> |
|||
<math>\mathbf {X}(s)=-\frac{4}{(s+2)^2} </math><br /><br /> |
|||
<math>\text {Now that we have completed the Laplace Transform}\,</math> |
|||
<math>\text {and solved for X(s) we must so an inverse Laplace Transform. }\,</math> |
|||
<math>\mathcal{L}^{-1}[-\frac{4}{(s+2)^2}]</math><br /><br /> |
|||
<math>\text {and we get}\,</math> |
|||
<math>\mathbf {x}(t)=-4te^{-2t}</math><br /><br /> |
|||
<math>\text {So there you have it the equation of a Critically Damped spring mass system.}\,</math> |
|||
==Apply the Initial and Final Value Theorems to find the initial and final values== |
|||
:Initial Value Theorem |
|||
::<math>\lim_{s\rightarrow \infty} sF(s)=f(0)\,</math> |
|||
:Final Value Theorem |
|||
::<math>\lim_{s\rightarrow 0} sF(s)=f(\infty)\,</math> |
|||
===Applying this to our problem=== |
|||
<math>\text {The Initial Value Theorem}\,</math> |
|||
<math>\lim_{s\rightarrow \infty} \mathbf {sX}(s)=-\frac{4}{(s+2)^2}\,</math> |
|||
<math>\lim_{s\rightarrow \infty} \mathbf s{X}(s)=-\frac{4}{(\infty+2)^2}=0\,</math> |
|||
<math>\text {So as you can see the value for the initial position will be 0. }\,</math> |
|||
<math>\text {Which makes sense because the system is initially in equilibrium. }\,</math> |
|||
<math>\text {The Final Value Theorem}\,</math> |
|||
<math>\lim_{s\rightarrow 0} \mathbf s{X}(s)=-\frac{4}{(s+2)^2}\,</math> |
|||
<math>\lim_{s\rightarrow 0} \mathbf s{X}(s)=-\frac{4}{(0+2)^2}=-\frac 4 {4}\,</math> |
|||
<math>\text {This shows the final value to be}\,</math> |
|||
<math>-\frac{4}{4}ft</math> |
|||
<math>\text {Which appears to mean the system will be right below equilibrium after a long time. }\,</math> |
|||
==Bode Plot of the transfer function== |
|||
===Transfer Function=== |
|||
<math>\mathbf {X}(s)=-\frac{3}{(s+4)^2} </math><br /><br /> |
Revision as of 23:57, 22 October 2009
Using the Laplace Transform to solve a spring mass system that is critically damped
Problem Statement
An 98 Newton weight is attached to a spring with a spring constant k of 5 N/m. The spring is stretched 4 m and rests at its equilibrium position. It is then released from rest with an initial upward velocity of 2 m/s. The system contains a damping force of 2 times the initial velocity.
Solution
Things we know
Solving the problem
Apply the Initial and Final Value Theorems to find the initial and final values
- Initial Value Theorem
- Final Value Theorem
Applying this to our problem
Bode Plot of the transfer function
Transfer Function