Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
Note that <math>\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt = \delta (f^{''}-f^') \!</math><br><br>
Note that <math>\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt = \delta (f^{''}-f^') \!</math><br><br>
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br>
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br>
Someone please review this!
 
Reviewed by [[Nick Christman]]


----
----


[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
'''Find <math>\mathcal{F}[10^{t}g(t)e^{j2 \pi ft_{0}}]</math><br/>'''
1. '''Find <math>\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt]</math><br/>'''


To begin, we know that<br/>
To begin, we know that<br/>


<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0}e^{-j2 \pi ft}\,dt = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi f(t_{0}-t)}\,dt</math>
<math>  
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt]  
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt
</math>
<br/>
After some factoring and combinting of like terms we get:
<br/>
<math>
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt]
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt
</math>
<br/>


But recall that <math>e^{j2 \pi f(t_{0}-t)} \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math>
But recall that  
<math>\int_{- \infty}^{\infty}e^{j2 \pi f(t_{0}-t)} \,dt \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math>




Because of this definition, our problem has now been simplified significantly: <br/>
Because of this definition (and some "math magic") our problem has been simplified significantly: <br/>


<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)</math> <br/>
<math>
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt]
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)
</math>  
<br/>


Therefore,
Therefore,
Line 41: Line 58:
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math>
<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math>


2.





Revision as of 13:37, 31 October 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find [cos(w0t)g(t)]
Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt
Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt
Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)
So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]


reviewed by Joshua Sarris


2. Find [g(t)h*(t)dt]
Recall g(t)=1[G(f)]=G(f)ej2πftdf
Similarly, h(t)=1[H(f)]=H(f)ej2πftdf
So [g(t)h*(t)dt]=G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt
Now G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt=G(f')H*(f')ej2π(f'f')tdtdf'df'

Note that ej2π(f'f')tdt=δ(f'f')

So [g(t)h*(t)dt]=G(f)H*(f)df

Reviewed by Nick Christman


Nick Christman

1. Find [10tg(t)ej2πft0dt]

To begin, we know that

[10tg(t)ej2πft0dt]=(10tg(t)ej2πft0dt)ej2πftdt
After some factoring and combinting of like terms we get:
[10tg(t)ej2πft0dt]=(10tg(t)dt)ej2πf(t0t)dt

But recall that ej2πf(t0t)dtδ(t0t) or δ(tt0)


Because of this definition (and some "math magic") our problem has been simplified significantly:

[10tg(t)ej2πft0dt]=10tg(t)δ(tt0)dt=10t0g(t0)

Therefore,

[10tg(t)ej2πft0]=10t0g(t0)


2.



Joshua Sarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=sin(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0tej2πf0t]g(t)ej2πftdt

Now integrating gives us,

1j2[ej2πf0tej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt12ej2π(f+f0)tg(t)dt=1j2G(ff0)1j2G(f+f0)


So we now have the identity,

[sin(w0t)g(t)]=1j2[G(ff0)G(f+f0)]

or rather

[sin(w0t)g(t)]=12j[G(f+f0)+G(ff0)]

Reviewed by Max