Fourier Transform Properties: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 30: | Line 30: | ||
<math> |
<math> |
||
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt] |
\mathcal{F} \left[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] |
||
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt |
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt |
||
</math> |
</math> |
||
<br/> |
<br/> |
||
After some factoring and combinting of like terms we get: |
After some factoring and combinting of like terms we get: |
||
<br/> |
<br/> |
||
<math> |
<math> |
||
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt] |
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] |
||
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt |
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt |
||
</math> |
</math> |
||
Line 49: | Line 51: | ||
<math> |
<math> |
||
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt] |
\mathcal{F}\left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] |
||
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0) |
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0) |
||
</math> |
</math> |
||
Line 56: | Line 58: | ||
Therefore, |
Therefore, |
||
<math> |
<math> mathcal{F}\left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math> |
||
Revision as of 12:39, 31 October 2009
Some properties to choose from if you are having difficulty....
Max Woesner
1. Find
Recall , so
Also recall ,so
Now
So
reviewed by Joshua Sarris
2. Find
Recall
Similarly,
So
Now
Note that
So
Reviewed by Nick Christman
Nick Christman
1. Find
To begin, we know that
After some factoring and combinting of like terms we get:
But recall that
Because of this definition (and some "math magic") our problem has been simplified significantly:
Therefore,
2.
Joshua Sarris
Find
Recall
,
so expanding we have,
Also recall ,
so we can convert to exponentials.
Now integrating gives us,
So we now have the identity,
or rather