Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 40: Line 40:


<math>
<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt
\int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt
</math>
</math>
<br/>
<br/>


But this is simply <math> G(f') \mbox{ where } f'=f-f_{0}</math>. Therefore,
Now let's make the following substitution <math> \displaystyle \theta = f-f_{0}</math>
 
This now gives us a surprisingly familiar function:
 
<math>
\int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi \theta t} \,dt
</math>
<br/>
 
This looks just like <math> \displaystyle G(\theta )</math>!
 
We can now conclude that:
<br/>
<br/>


<math>
<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(f-f_{0})
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(\theta ) = G(f-f_{0})
</math>
</math>
<br/>
<br/>
'''PLEASE ENTER PEER REVIEW HERE'''
<br/>
<br/>
<br/>


**** PLEASE ENTER PEER REVIEW HERE ****
2. '''Find <math>\mathcal{F} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right]</math><br/>'''


2. Using the above definition of ''complex modulation'' and the definition from class of a ''time delay'' (a.k.a "the slacker function"), I will show a hybrid of the two:
-- Using the above definition of ''complex modulation'' and the definition from class of a ''time delay'' (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...
<br/>
 
By definition we know that:


<math>
<math>
Line 63: Line 83:


<math>
<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt
\int_{- \infty}^{\infty} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt
</math>
</math>
<br/>
<br/>
Line 72: Line 92:


<math>
<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0}} \,dt
\int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,dt
</math>
</math>


After some simplification and rearranging terms, we get:
After some simplification and rearranging terms, we get:


\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0}} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda} e^-j2 \pi (f-f_{0})t_{0}} \,dt  
<math>
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,dt
</math>
 
Rearranging the terms yet again, we get:
 
<math>
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,dt = e^{-j2 \pi (f-f_{0})t_{0}} \left[ \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda }  \,dt \right]
</math>


We know that the exponential in terms of <math>t_{0}</math> is simply a constant and because of the Fourier Property of ''complex modualtion'', we finally get:
We know that the exponential in terms of <math>\displaystyle t_{0}</math> is simply a constant and because of the Fourier Property of ''complex modualtion'', we finally get:


<math>
<math>
Line 85: Line 113:
</math>
</math>


**** PLEASE ENTER PEER REVIEW HERE ****
<br/>
 
'''PLEASE ENTER PEER REVIEW HERE'''
 
<br/>
<br/>


----
----

Revision as of 15:35, 31 October 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find [cos(w0t)g(t)]
Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt
Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt
Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)
So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]


reviewed by Joshua Sarris


2. Find [g(t)h*(t)dt]
Recall g(t)=1[G(f)]=G(f)ej2πftdf
Similarly, h(t)=1[H(f)]=H(f)ej2πftdf
So [g(t)h*(t)dt]=G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt
Now G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt=G(f')H*(f')ej2π(f'f')tdtdf'df'

Note that ej2π(f'f')tdt=δ(f'f')

So [g(t)h*(t)dt]=G(f)H*(f)df

-- I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. Good job!

Reviewed by Nick Christman


Nick Christman

Note: After scratching my head for a couple of hours, I decided that I would try a different Fourier Property. In fact, I chose a property that would need to be defined in order to show my second property.

1. Find [g(t)ej2πf0t]

This is a fairly straightforward property and is known as complex modulation

[g(t)ej2πf0t]=[g(t)ej2πf0t]ej2πftdt

Combining terms, we get:

[g(t)ej2πf0t]ej2πftdt=g(t)ej2π(ff0)tdt

Now let's make the following substitution θ=ff0

This now gives us a surprisingly familiar function:

g(t)ej2π(ff0)tdt=g(t)ej2πθtdt

This looks just like G(θ)!

We can now conclude that:

[g(t)ej2πf0t]=G(θ)=G(ff0)

PLEASE ENTER PEER REVIEW HERE



2. Find [g(tt0)ej2πf0t]

-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...

By definition we know that:

[g(tt0)ej2πf0t]=[g(tt0)ej2πf0t]ej2πftdt

Rearranging terms we get:

[g(tt0)ej2πf0t]ej2πftdt=g(tt0)ej2π(ff0)tdt

Now lets make the substitution λ=tt0t=λ+t0.
This leads us to:

g(tt0)ej2π(ff0)tdt=g(λ)ej2π(ff0)(λ+t0)dt

After some simplification and rearranging terms, we get:

g(λ)ej2π(ff0)(λ+t0)dt=g(λ)ej2π(ff0)λej2π(ff0)t0dt

Rearranging the terms yet again, we get:

g(λ)ej2π(ff0)λej2π(ff0)t0dt=ej2π(ff0)t0[g(λ)ej2π(ff0)λdt]

We know that the exponential in terms of t0 is simply a constant and because of the Fourier Property of complex modualtion, we finally get:

[g(t)ej2πf0t]=G(ff0)ej2π(ff0)t0


PLEASE ENTER PEER REVIEW HERE




Joshua Sarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=sin(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0tej2πf0t]g(t)ej2πftdt

Now integrating gives us,

1j2[ej2πf0tej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt12ej2π(f+f0)tg(t)dt=1j2G(ff0)1j2G(f+f0)


So we now have the identity,

[sin(w0t)g(t)]=1j2[G(ff0)G(f+f0)]

or rather

[sin(w0t)g(t)]=12j[G(f+f0)+G(ff0)]

Reviewed by Max