Homework Six: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
<br/>
<br/>


(b)If <math> S(0) \neq 0 <\math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of S(0)?
(b)If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?


<br/>
<br/>


(c) Do another property on the Wiki and get it reviewed (i.e. review a second property) -- [[Fourier Transform Properties]]
(c)

'''Find <math>\mathcal{F} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right]</math><br/>'''

-- Using the above definition of ''complex modulation'' and the definition from class of a ''time delay'' (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...
<br/>

By definition we know that:

<math>
\mathcal{F} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt
</math>

Rearranging terms we get:

<math>
\int_{- \infty}^{\infty} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt
</math>
<br/>

Now lets make the substitution <math>\lambda = t-t_{0} \rightarrow t = \lambda + t_{0}</math>.
<br/>
This leads us to:

<math>
\int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,dt
</math>

After some simplification and rearranging terms, we get:

<math>
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,dt
</math>

Rearranging the terms yet again, we get:

<math>
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,dt = e^{-j2 \pi (f-f_{0})t_{0}} \left[ \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } \,dt \right]
</math>

We know that the exponential in terms of <math>\displaystyle t_{0}</math> is simply a constant and because of the Fourier Property of ''complex modualtion'', we finally get:

<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(f-f_{0})e^{-j2 \pi (f-f_{0})t_{0}}
</math>

<br/>

Revision as of 15:03, 31 October 2009

Perform the following tasks:


Nick Christman

(a) Show


(b)If can you find in terms of ?


(c) Do another property on the Wiki and get it reviewed (i.e. review a second property) -- Fourier Transform Properties

Find

-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...

By definition we know that:

Rearranging terms we get:


Now lets make the substitution .
This leads us to:

After some simplification and rearranging terms, we get:

Rearranging the terms yet again, we get:

We know that the exponential in terms of is simply a constant and because of the Fourier Property of complex modualtion, we finally get: