Homework Four: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> | [[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br> | ||
1. '''Find <math>\mathcal{F} \left[ | 1. '''Find <math>\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] </math><br/>''' | ||
This is a fairly straightforward property and is known as ''complex modulation''<br/> | |||
<math> | <math> | ||
\mathcal{F} \left[ | \mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt | ||
= \int_{- \infty}^{\infty} \left | |||
</math> | </math> | ||
Combining terms, we get: | |||
<math> | <math> | ||
\int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt | |||
</math> | </math> | ||
<br/> | <br/> | ||
Now let's make the following substitution <math> \displaystyle \theta = f-f_{0}</math> | |||
<math>\ | |||
This now gives us a surprisingly familiar function: | |||
<math> | <math> | ||
\int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi \theta t} \,dt | |||
= \int_{- \infty}^{\infty | </math> | ||
</math> | |||
<br/> | <br/> | ||
This looks just like <math> \displaystyle G(\theta )</math>! | |||
We can now conclude that: | |||
<br/> | |||
<math> \mathcal{F} \left[ | <math> | ||
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(\theta ) = G(f-f_{0}) | |||
</math> | |||
<br> | <br> | ||
Looks good - Kevin |
Latest revision as of 09:36, 8 November 2009
Nick Christman
1. Find
This is a fairly straightforward property and is known as complex modulation
Combining terms, we get:
Now let's make the following substitution
This now gives us a surprisingly familiar function:
This looks just like !
We can now conclude that:
Looks good - Kevin