Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 105: Line 105:




<math>e^{At}=\mathcal{L}^{-1}\left\{(SI-A)^{-1}\right\},\,</math>
<math>e^{At}=\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\}\,</math>
 
 
 
<math>[SI-A]\,</math>
=
<math>
\begin{bmatrix}
S&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&S&\frac{-100 N/m}{15 kg}&0 \\
0&0&S&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&S
\end{bmatrix}
 
</math>


Written by: Andrew Hellie
Written by: Andrew Hellie

Revision as of 21:05, 30 November 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 

Initial Conditions:

m1=15kg
m2=15kg
k1=100N/m
k2=150N/m
k3=100N/m

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)15kg0100N/m15kg00001100N/m15kg0(250N/m)15kg0][x1x˙1x2x˙2]


Eigenmodes

There are three eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference



Solve Using the Matrix Exponential


eAt=1{[SIA]1}


[SIA] = [S100(50N/m)15kgS100N/m15kg000S1100N/m15kg0(250N/m)15kgS]

Written by: Andrew Hellie