Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 10: Line 10:
Substituting numbers into the equations, we have
Substituting numbers into the equations, we have


<math>0.5\frac{di_1}{dt}+60i_2=50</math>
<math>0.5\frac{di_1}{dt}+80i_2=50</math>


<math>60(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>
<math>80(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>


Applying the Laplace transform to each equation gives
Applying the Laplace transform to each equation gives


<math>\frac{1}{2}(s\mathcal{L}\left\{i_1\right\}-i_1(0))+60\mathcal{L}\left\{i_2\right\}=50</math>
<math>\frac{1}{2}(s\mathcal{L}\left\{i_1\right\}-i_1(0))+80\mathcal{L}\left\{i_2\right\}=50</math>


<math>0.006(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>
<math>0.008(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>


<math>\Rightarrow\frac{1}{2}sI_1(s)+60I_2(s)=\frac{50}{s}</math>
<math>\Rightarrow\frac{1}{2}sI_1(s)+80I_2(s)=\frac{50}{s}</math>


<math>-200I_1(s)+[s+200]I_2(s)=0</math>
<math>-125I_1(s)+[s+125]I_2(s)=0</math>


Solving for <math>\mathcal{L}\left\{i_1\right\}</math> gives
Solving for <math>I_1(s)</math> gives

<math>I_s(s)= \frac{100s+12500}{s(s^2+125s+20000)}</math>

Revision as of 15:01, 1 December 2009

Problem Statement

Using the formulas



Solve the system when V0 = 50 V, L = 0.5 h, R = 80 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10^{-4} f, and the currents are initially zero. Substituting numbers into the equations, we have

Applying the Laplace transform to each equation gives

Solving for gives