Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 24: Line 24:
<math>-125I_1(s)+[s+125]I_2(s)=0</math>
<math>-125I_1(s)+[s+125]I_2(s)=0</math>


Solving for <math>I_1(s)</math> gives
Solving for <math>I_2(s)</math>


<math>I_s(s)= \frac{100s+12500}{s(s^2+125s+20000)}</math>
<math>I_2(s)= \frac{12500}{s(s^2+125s+20000)}</math>

We find the partial decomposition

Let <math>I_2(s)= \frac{12500}{s(s^2+125s+20000)}=\frac{A}{s}+\frac{Bs+C}{s^2+125s+20000}</math>

<math>\Rightarrow12500=A(s^2+125s+20000)+(Bs+C)s</math>

<math>\Rightarrow12500=As^2+125As+20000A+Bs^2+Cs</math>

Comparing the coefficients we get

<math>A=\frac{5}{8},B=-5,C=-625</math>

Thus
<math>I_2(s)=\frac{5}{8s}-\frac{5s+625}{s^2+125s+20000}</math>

Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in

<math>I_1(s)= \frac{100s+12500}{s(s^2+125s+20000)}=\frac{5}{8s}+\frac{-5s+175}{s^2+125s+20000}</math>

Revision as of 15:35, 1 December 2009

Problem Statement

Using the formulas



Solve the system when V0 = 50 V, L = 0.5 h, R = 80 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10^{-4} f, and the currents are initially zero. Substituting numbers into the equations, we have

Applying the Laplace transform to each equation gives

Solving for

We find the partial decomposition

Let

Comparing the coefficients we get

Thus

Now we do the same for where we solve the function in terms of and decomposing the partial fraction resulting in