ASN2 - Something Interesting: Exponential: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


Using cosine to represent the basis functions
Using cosine to represent the basis functions
<math> x(t)= \sum_{n=0}^\infty a_n cos(\frac{ 2 \pi mt}{T}) \!</math>
<math> x(t)= \sum_{n=0}^\infty a_n cos(\frac{ 2 \pi nt}{T}) \!</math>


Using an exponential to represent basis functions
Using an exponential to represent basis functions
<math> x(t)= \sum_{n=0}^\infty a_n e^(\frac{ j2 \pi mt}{T}) \!</math>
<math> x(t)= \sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}} \!</math>

To obtain the coefffients <math>a_n</math> the solutions are almost identical. The benefit of using the eponetial funtion is that mathematical it is simplier for solving than using the cosine function.

Revision as of 06:50, 3 December 2009

Fourier Series

Using cosine to represent the basis functions

Using an exponential to represent basis functions

To obtain the coefffients the solutions are almost identical. The benefit of using the eponetial funtion is that mathematical it is simplier for solving than using the cosine function.