Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2) + (m_1+m_2)l_1gsin\theta_1 = 0</math>
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2) + (m_1+m_2)l_1gsin\theta_1 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime}cos(\theta_1-\theta_2) - m_2l_1l_2(\theta_1^{\prime})^2sin(\theta_1-\theta_2) + m_2l_2gsin\theta_2 = 0</math>
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime}cos(\theta_1-\theta_2) - m_2l_1l_2(\theta_1^{\prime})^2sin(\theta_1-\theta_2) + m_2l_2gsin\theta_2 = 0</math>


In order to linearize these equations, we assume that the displacements <math>\theta_1</math> and <math>\theta_2</math> are small enough so that <math>cos(\theta_1-\theta_2)\approx1</math> and <math>sin(\theta_1-\theta_2)\approx0</math>. Thus,
In order to linearize these equations, we assume that the displacements <math>\theta_1</math> and <math>\theta_2</math> are small enough so that <math>cos(\theta_1-\theta_2)\approx1</math> and <math>sin(\theta_1-\theta_2)\approx0</math>. Thus,
Line 41: Line 42:


: <math>A(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math>
: <math>A(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math>
: <math>\boldsymbol{\Theta}_1(s^2A+C)-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math>


: <math>D(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + B(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + E\boldsymbol{\Theta}_2 = 0</math>
: <math>D(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + B(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + E\boldsymbol{\Theta}_2 = 0</math>
At time <math>t=0</math> we assume that <math>\theta_1(t)^{\prime}=\theta_2(t)^{\prime}=0</math>. Thus, solvin for <math>\boldsymbol{\Theta}_1</math> and <math>\boldsymbol{\Theta}_2</math> we obtain,
: <math>\boldsymbol{\Theta}_1=\dfrac{sA\theta_1+sB\theta_2-s^2B\boldsymbol{\Theta}_2}{(s^2A+C)}</math>
: <math>\boldsymbol{\Theta}_2=\dfrac{sB\theta_1+sD\theta_2-s^2B\boldsymbol{\Theta}_1}{(s^2D+E)}</math>
=== State Space ===

Revision as of 22:45, 6 December 2009

By Jimmy Apablaza By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Error creating thumbnail: File missing
Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear

(m1+m2)l12θ1+m2l1l2θ2cos(θ1θ2)+m2l1l2(θ2)2sin(θ1θ2)+(m1+m2)l1gsinθ1=0
m2l12θ2+m2l1l2θ1cos(θ1θ2)m2l1l2(θ1)2sin(θ1θ2)+m2l2gsinθ2=0


In order to linearize these equations, we assume that the displacements θ1 and θ2 are small enough so that cos(θ1θ2)1 and sin(θ1θ2)0. Thus,

(m1+m2)l12θ1+m2l1l2θ2+(m1+m2)l1gθ1=0
m2l12θ2+m2l1l2θ1+m2l2gθ2=0

Solution

Laplace Transform

Since our concern is about the motion functions, we will assign the masses m1 and m2, the rod lenghts l1 and l1, and gravitational force g constants to different variables as follows,

A=(m1+m2)l12B=m2l1l2C=(m1+m2)l1gD=m2l12E=m2l2g

Hence,

Aθ1+Bθ2+Cθ1=0
Dθ2+Bθ1+Eθ2=0

Solving the Laplace Transform system yeilds,

A(s2Θ1sθ1θ1)+B(s2Θ2sθ2θ2)+CΘ1=0
D(s2Θ2sθ2θ2)+B(s2Θ1sθ1θ1)+EΘ2=0

At time t=0 we assume that θ1(t)=θ2(t)=0. Thus, solvin for Θ1 and Θ2 we obtain,

Θ1=sAθ1+sBθ2s2BΘ2(s2A+C)
Θ2=sBθ1+sDθ2s2BΘ1(s2D+E)


State Space