Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 105: Line 105:
</math>
</math>


Let's plugs some numbers. Knowing <math>g (32)</math>, and assuming that <math>m_1=3</math>, <math>m_2=1</math>, and <math>l_1=l_2=16</math>, the state space matrix is,  
Let's plug some numbers. Knowing <math>g=32</math>, and assuming that <math>m_1=3</math>, <math>m_2=1</math>, and <math>l_1=l_2=16</math>, the state space matrix becomes,  
 
: <math>
\begin{bmatrix}
\theta_1^{'} \\ \theta_1^{''} \\ \theta_2^{'} \\ \theta_2^{''}
\end{bmatrix}
 
=
 
\begin{bmatrix}
0            & 1 & 0            & 0 \\
-\dfrac{8}{5} & 0 & -\dfrac{8}{5} & 0 \\
0            & 0 & 0            & 1 \\
\dfrac{8}{5}  & 0 & -\dfrac{8}{5} & 0 \\
\end{bmatrix}
 
\begin{Bmatrix}
\theta_1 \\ \theta_1^{'} \\ \theta_2 \\ \theta_2^{'}
\end{Bmatrix}
 
</math>
 


=== Laplace Transform ===
=== Laplace Transform ===
Line 116: Line 137:


\begin{bmatrix}
\begin{bmatrix}
s                   & 1 & 0                   & 0 \\
s                 & 1 & 0         & 0 \\
& & & \\
-\dfrac{8}{5} & s & -\dfrac{8}{5} & 0 \\
\dfrac{-8}{5} & s & \dfrac{-8}{5} & 0 \\
0                 & 0 & s         & 1 \\
& & & \\
\dfrac{8}{5}  & 0 & -\dfrac{8}{5} & s \\
0                   & 0 & s                   & 1 \\
& & & \\
\dfrac{8}{5}  & 0 & \dfrac{-8}{5} & s \\
\end{bmatrix}
\end{bmatrix}



Revision as of 13:47, 9 December 2009

By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Error creating thumbnail: File missing
Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear

(m1+m2)l12θ1+m2l1l2θ2cos(θ1θ2)+m2l1l2(θ2)2sin(θ1θ2)+(m1+m2)l1gsinθ1=0
m2l12θ2+m2l1l2θ1cos(θ1θ2)m2l1l2(θ1)2sin(θ1θ2)+m2l2gsinθ2=0


In order to linearize these equations, we assume that the displacements θ1 and θ2 are small enough so that cos(θ1θ2)1 and sin(θ1θ2)0. Thus,

(m1+m2)l12θ1+m2l1l2θ2+(m1+m2)l1gθ1=0
m2l12θ2+m2l1l2θ1+m2l2gθ2=0

Solution

Since our concern is about the motion functions, we will assign the masses m1 and m2, the rod lenghts l1 and l1, and gravitational force g constants to different variables as follows,

A=(m1+m2)l12B=m2l1l2C=(m1+m2)l1gD=m2l12E=m2l2g

Hence,

Aθ1'+Bθ2'+Cθ1=0
Dθ2'+Bθ1'+Eθ2=0

Solving for θ1' and θ2' we obtain,

θ1'=(BA)θ2'(CA)θ1
θ2'=(BD)θ1'(ED)θ2

Therefore,

θ1'=(CDAD+B2)θ1(BEAD+B2)θ2
θ2'=(BCAD+B2)θ1(AEAD+B2)θ2

State Space

[θ1'θ1'θ2'θ2']=A^x_(t)+B^u_(t)=[0100CDAD+B20BEAD+B200001BCAD+B20AEAD+B20]{θ1θ1'θ2θ2'}+0^

Plugging the constants yields,

[θ1'θ1'θ2'θ2']=[0100l1(m1+m2)gl12(m1+m2)+l22m20l22m2gl1(l12(m1+m2)+l22m2)00001l2(m1+m2)gl12(m1+m2)+l22m20l2(m1+m2)gl12(m1+m2)+l22m20]{θ1θ1'θ2θ2'}

Let's plug some numbers. Knowing g=32, and assuming that m1=3, m2=1, and l1=l2=16, the state space matrix becomes,

[θ1'θ1'θ2'θ2']=[01008508500001850850]{θ1θ1'θ2θ2'}


Laplace Transform

First, we determine the eigenvalues of the A^ matrix,

[sIA]=[s10085s85000s185085s]

Hence, the inverse matrix (thanks TI-89!) is,

[sIA]1=[s10085s85000s185085s]