Coupled Oscillator: Jonathan Schreven: Difference between revisions
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
Using F=ma we can then find our equations of equilibrium. |
Using F=ma we can then find our equations of equilibrium. |
||
:'''Equation 1''' |
|||
:<math>\begin{alignat}{3} |
:<math>\begin{alignat}{3} |
||
F & = ma \\ |
F & = ma \\ |
||
Line 16: | Line 16: | ||
-{k_1+k_2 \over {m_1}}x_1+{k_2 \over {m_1}}x_2 & = \ddot{x_1} \\ |
-{k_1+k_2 \over {m_1}}x_1+{k_2 \over {m_1}}x_2 & = \ddot{x_1} \\ |
||
\end{alignat}</math> |
\end{alignat}</math> |
||
:'''Equation 2''' |
|||
:<math>\begin{alignat}{3} |
|||
F & = ma \\ |
|||
F & = m\ddot{x} \\ |
|||
-k_2(x_2-x_1) & = m_2\ddot{x_2} \\ |
|||
{-k_2(x_2-x_1) \over {m_2}} & = \ddot{x_2} \\ |
|||
-{k_2 \over {m_2}}x_2+{k_2 \over {m_2}}x_1 & = \ddot{x_2} \\ |
|||
\end{alignat}</math> |
|||
:'''Equation 3''' |
|||
:<math>\dot{x_1}=\dot{x_1}</math> |
|||
:'''Equation 4''' |
|||
:<math>\dot{x_2}=\dot{x_2}</math> |
Revision as of 17:41, 9 December 2009
Coupled Oscillator System
In this problem I would like to explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Our system might look something like this.
Using F=ma we can then find our equations of equilibrium.
- Equation 1
- Equation 2
- Equation 3
- Equation 4