Coupled Oscillator: Jonathan Schreven: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 28: Line 28:
:'''Equation 4'''
:'''Equation 4'''
:<math>\dot{x_2}=\dot{x_2}</math>
:<math>\dot{x_2}=\dot{x_2}</math>
Now we can put these four equations into the state space form.
:<math>\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 & 0 \\
-{(k_1+k_2)\over {m_1}} & 0 & {k_2\over {m_1}} & 0 \\
0 & 0 & 0 & 1 \\
-{k_2\over {m_2}} & 0 & {k_2\over {m_2}} & 0
\end{bmatrix}
\begin{bmatrix}
{x_1} \\
\dot{x_1} \\
{x_2} \\
\dot{x_2}
\end{bmatrix}
+
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}</math>

Revision as of 18:50, 9 December 2009

Coupled Oscillator System

In this problem I would like to explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Our system might look something like this.


Using F=ma we can then find our equations of equilibrium.

Equation 1
F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨
Equation 2
F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨
Equation 3
x1˙=x1˙
Equation 4
x2˙=x2˙


Now we can put these four equations into the state space form.

[x1˙x1¨x2˙x2¨]=[0100(k1+k2)m10k2m100001k2m20k2m20][x1x1˙x2x2˙]+[0000]