Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 69: Line 69:
==Initial Value Theorem==
==Initial Value Theorem==


<math>\lim_{s \to \infty}sF(s)=f(0^+)</math>
<math>\lim_{s \to \infty}sI(s)=f(0^+)</math>


<math>\Rightarrow \lim_{s \to \infty}\frac{6250}{s(s^2+500s+2500)}=i(0)</math>
<math>\lim_{s \to \infty} \frac{25s+12500}{s(s^2+500s+2500)}=i(0)</math>

<math> \Rightarrow i(0)=0</math>

<math>\lim_{s \to \infty}\frac{6250}{s(s^2+500s+2500)}=i(0)</math>


<math> \Rightarrow i(0)=0</math>
<math> \Rightarrow i(0)=0</math>

Revision as of 01:39, 10 December 2009

Problem Statement

Using the formulas



Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Applying the Laplace transform to each equation gives

Solving for

We find the partial decomposition

Let

Comparing the coefficients we get

Thus

Now we do the same for where we solve the function in terms of and decomposing the partial fraction resulting in

In order to make it nicer on us we need to complete the square as follows

Taking the Inverse Laplace transform yields


Initial Value Theorem

Final Value Theorem

Bode Plots