|
|
Line 71: |
Line 71: |
|
<math>\lim_{s \to \infty}sI(s)=f(0^+)</math> |
|
<math>\lim_{s \to \infty}sI(s)=f(0^+)</math> |
|
|
|
|
|
<math>\lim_{s \to \infty} \frac{25s+12500}{s(s^2+500s+2500)}=i(0)</math> |
|
<math>\lim_{s \to \infty} s\frac{25s+12500}{s(s^2+500s+2500)}=i(0)</math> |
|
|
|
|
|
<math> \Rightarrow i(0)=0</math> |
|
<math> \Rightarrow i(0)=0</math> |
|
|
|
|
|
<math>\lim_{s \to \infty}\frac{6250}{s(s^2+500s+2500)}=i(0)</math> |
|
<math>\lim_{s \to \infty}s\frac{6250}{s(s^2+500s+2500)}=i(0)</math> |
|
|
|
|
|
<math> \Rightarrow i(0)=0</math> |
|
<math> \Rightarrow i(0)=0</math> |
Problem Statement
Using the formulas
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.
Solution
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.
Applying the Laplace transform to each equation gives
Solving for
We find the partial decomposition
Let
Comparing the coefficients we get
Thus
Now we do the same for where we solve the function in terms of and decomposing the partial fraction resulting in
In order to make it nicer on us we need to complete the square as follows
Taking the Inverse Laplace transform yields
Initial Value Theorem
Final Value Theorem
Bode Plots