Coupled Oscillator: horizontal Mass-Spring: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 98: Line 98:
\begin{bmatrix}
\begin{bmatrix}
0&1&0&0 \\
0&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&0&\frac{-100 N/m}{15 kg}&0 \\
\frac{(-50 N/m)}{10 kg}&0&\frac{-25 N/m}{10 kg}&0 \\
0&0&0&1 \\
0&0&0&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&0  
\frac{25 N/m}{10 kg}&0&\frac{(100 N/m)}{10 kg}&0  
\end{bmatrix}
\end{bmatrix}



Revision as of 14:48, 10 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 

Initial Conditions:

m1=10kg
m2=10kg
k1=25N/m
k2=75N/m
k3=50N/m

Equations for M_1

F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨

Equations for M_2

F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨

Additional Equations

x1˙=x1˙
x2˙=x2˙

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)10kg025N/m10kg0000125N/m10kg0(100N/m)10kg0][x1x˙1x2x˙2]