Coupled Oscillator: horizontal Mass-Spring: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 1: Line 1:
===Problem Statement===
=Problem Statement=


'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum.  Use State Space methods.  Describe the eigenmodes of the system.'''
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum.  Use State Space methods.  Describe the eigenmodes and eigenvectors of the system.'''


   [[Image:horizontal spring.jpg]]
   [[Image:horizontal spring.jpg]]
Line 39: Line 39:
:<math>\dot{x_2}=\dot{x_2}</math>
:<math>\dot{x_2}=\dot{x_2}</math>


'''State Equations'''
==State Equations==


<math>
<math>

Revision as of 14:51, 10 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes and eigenvectors of the system.

 

Initial Conditions:

m1=10kg
m2=10kg
k1=25N/m
k2=75N/m
k3=50N/m

Equations for M_1

F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨

Equations for M_2

F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨

Additional Equations

x1˙=x1˙
x2˙=x2˙

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)10kg025N/m10kg0000125N/m10kg0(100N/m)10kg0][x1x˙1x2x˙2]