Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 106: Line 106:
</math>
</math>


=== Eigenvalues ===
=== Eigenvalues & Eigenvectors ===
The eigenvalues are obtained from <math>\widehat{A}</math>'s identity matrix,
The eigenvalues and eigenvectors are easily obtained with the help of a TI-89 calculator. First, we consider the <math>\widehat{A}</math>'s identity matrix,


: <math>
: <math>
Line 123: Line 123:
</math>
</math>


According to my TI-89, the eigenvalues are,
Once we define the <math>\widehat{A}</math> matrix, the eigenvalues are determined by using the '''''eigVl()''''' function,


: <math>\lambda_1= 2 \mathbf{i}</math>
: <math>\lambda_1= 2 \mathbf{i}</math>
Line 130: Line 130:
: <math>\lambda_4= -1.1547 \mathbf{i}</math>
: <math>\lambda_4= -1.1547 \mathbf{i}</math>


and the eigenvectors,
On the other hand, we use the '''''eigVc()''''' function to find the eigenvectors,


: <math>
: <math>
Line 281: Line 281:
</math>
</math>


Again, we can resort to the TI-89 calculator. As it is mentioned above, the matrix exponential is obtained by typing '''''eigVc(a)^-1*a*eigVc(a)''''', where '''''a''''' is the <math>\widehat{A}</math> matrix. Thus,
Thus,


: <math>
: <math>

Revision as of 16:16, 12 December 2009

By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear


In order to linearize these equations, we assume that the displacements and are small enough so that and . Thus,

Solution

Since our concern is about the motion functions, we will assign the masses and , the rod lenghts and , and gravitational force constants to different variables as follows,

Hence,

Solving for and we obtain,

Therefore,

State Space

Let's plug some numbers. Knowing , and assuming that , , and , the constants defined previously become,

Hence, the state space matrix is,

Eigenvalues & Eigenvectors

The eigenvalues and eigenvectors are easily obtained with the help of a TI-89 calculator. First, we consider the 's identity matrix,

Once we define the matrix, the eigenvalues are determined by using the eigVl() function,

On the other hand, we use the eigVc() function to find the eigenvectors,

Standard Equation

Now, we plug the eigenvalues and eigenvectors to produce the standar equation,

Matrix Exponential

The matrix exponential is,

where

,

and

,

so

Again, we can resort to the TI-89 calculator. As it is mentioned above, the matrix exponential is obtained by typing eigVc(a)^-1*a*eigVc(a), where a is the matrix. Thus,