Example problems of magnetic circuits: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 27: | Line 27: | ||
<math> R_g = \frac {g}{\mu_0 (\sqrt{A} + g)^2} = \frac {.01}{4 \times \pi \times 10^{-7} (\sqrt{.1} + .01)^2} = 74.8 \times 10^{3} </math> <br> <br> |
<math> R_g = \frac {g}{\mu_0 (\sqrt{A} + g)^2} = \frac {.01}{4 \times \pi \times 10^{-7} (\sqrt{.1} + .01)^2} = 74.8 \times 10^{3} </math> <br> <br> |
||
Now Using <math> B_g = \frac{NI}{(R_g R_c)((\sqrt{A} + g)^2} |
Now Using <math> B_g = \frac{NI}{(R_g R_c)((\sqrt{A} + g)^2} </math> <br> |
||
Yields <math> B_g = \frac{5 \times 10}{74.8 \times 10^{3} \times 7.96 \times 10^{6} \times (\sqrt{.1} + .01)^2} = |
Revision as of 18:06, 10 January 2010
Given:
A copper core with susceptibility
length of core L = 1 m
Gap length g = .01 m
cross sectional area A = .1 m
current I = 10A
N = 5 turns
Find: B
Solution:
First we need to find the permeability of copper given by the equation
Which yeilds
Now with this, the length and cross sectional area of the core we can solve for reluctance by:
Similarly to get the reluctance of the gap
Now Using
Yields <math> B_g = \frac{5 \times 10}{74.8 \times 10^{3} \times 7.96 \times 10^{6} \times (\sqrt{.1} + .01)^2} =