Magnetic Flux: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 3: Line 3:
Magnetic Flux is the measure of the strength of a magnetic field over a given area. <ref>http://www.google.com/search?hl=en&safe=off&client=firefox-a&rls=org.mozilla:en-US:official&hs=lBE&defl=en&q=define:magnetic+flux&ei=gsNKS7r4EYuqsgPdmMT_Bg&sa=X&oi=glossary_definition&ct=title&ved=0CAcQkAE</ref>The Greek letter used to represent flux is Φ, phi. The area used must be perpendicular to the
Magnetic Flux is the measure of the strength of a magnetic field over a given area. <ref>http://www.google.com/search?hl=en&safe=off&client=firefox-a&rls=org.mozilla:en-US:official&hs=lBE&defl=en&q=define:magnetic+flux&ei=gsNKS7r4EYuqsgPdmMT_Bg&sa=X&oi=glossary_definition&ct=title&ved=0CAcQkAE</ref>The Greek letter used to represent flux is Φ, phi. The area used must be perpendicular to the
travel of the magnetic lines. The flux can then be determined by how many magnetic lines go
travel of the magnetic lines. The flux can then be determined by how many magnetic lines go
through the area surface. The net flux is the number of magnetic lines going through the area surface in one direction minus the number magnetic lines going through the surface area in the opposite direction.
through the area surface. The net flux is the number of magnetic lines going through the area surface in one direction minus the number magnetic lines going through the surface area in the opposite direction. The gneral quantitative expression for finding magnetic flux is:

:<math>\Phi_m = \int \!\!\!\! \int_S \mathbf{B} \cdot d\mathbf S,</math>
where
:'''B''' is the magnetic field
:'''S''' is the surface area

Revision as of 23:00, 10 January 2010

Magnetic Flux

Magnetic Flux is the measure of the strength of a magnetic field over a given area. <ref>http://www.google.com/search?hl=en&safe=off&client=firefox-a&rls=org.mozilla:en-US:official&hs=lBE&defl=en&q=define:magnetic+flux&ei=gsNKS7r4EYuqsgPdmMT_Bg&sa=X&oi=glossary_definition&ct=title&ved=0CAcQkAE</ref>The Greek letter used to represent flux is Φ, phi. The area used must be perpendicular to the travel of the magnetic lines. The flux can then be determined by how many magnetic lines go through the area surface. The net flux is the number of magnetic lines going through the area surface in one direction minus the number magnetic lines going through the surface area in the opposite direction. The gneral quantitative expression for finding magnetic flux is:

where

B is the magnetic field
S is the surface area