Magnetic Circuit: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
First, we note that the problem statement is incomplete. Assume that the core has a relative permeability of 500.  Hence, for all magnetic sections excluding the air gap,
First, we note that the problem statement is incomplete. Assume that the core has a relative permeability of 500.  Hence, for all magnetic sections excluding the air gap,


<center><math>\mu=\mu_r\mu_0=(500)(4\pi\times10^{-7})</math></center>
<center><math>\mu=\mu_r\mu_0=(500)(4\pi\times10^{-7})=6.2832\times10^{-4}</math></center>


Also, as recommended in the text, we will neglect fringing.
Also, as recommended in the text, we will neglect fringing.
Line 23: Line 23:
|}
|}


We must now work backward from the air-gap, since the value of the flux-density is given there.  All units are understood to be standard units.   
We must now work backward from the air-gap, since the value of the flux-density is given there.  We need only employ the analagous equations to Ohm's Law, KVL, and KCL.  All units are standard units.   
<br />
<br />
'''Air Gap:'''
'''Air Gap:'''
Line 29: Line 29:
<math>\mathcal{R}_{fg}=\frac{l_{fg}}{\mu A_fg} = 4973.6</math>
<math>\mathcal{R}_{fg}=\frac{l_{fg}}{\mu A_fg} = 4973.6</math>
<br />
<br />
<math>\Phi_{fg}=B_{fg}A_{fg}=3.2\times10^{-4}</math>
<math>\Phi_{fg}=B_{fg}A_{fg}=3.20\times10^{-4}</math>
<br />
<br />
<math>\mathcal{F}_{fg}=\mathcal{R}_{fg}\Phi_{fg}=1.5915</math>
<math>\mathcal{F}_{fg}=\mathcal{R}_{fg}\Phi_{fg}=1.5915</math>
Line 36: Line 36:
'''Right Arms:'''
'''Right Arms:'''
<br />
<br />
<math>\Phi_{def}=\Phi_{ghc} = \Phi_{fg} = 3.2\times10^{-4}</math>
<math>\Phi_{def}=\Phi_{ghc} = \Phi_{fg} = 3.20\times10^{-4}</math>
<br />
<br />
<math>\mathcal{R}_{def}=\mathcal{R}_{ghc}=\frac{l_{def}}{\mu A_{def}}=276030</math>
<math>\mathcal{R}_{def}=\mathcal{R}_{ghc}=\frac{l_{def}}{\mu A_{def}}=2.7603\times10^5</math>
<br />
<br />
<math>\mathcal{F}_{def}=\mathcal{F}_{ghc}=\mathcal{R}_{def}\Phi_{def}=88.331</math>
<math>\mathcal{F}_{def}=\mathcal{F}_{ghc}=\mathcal{R}_{def}\Phi_{def}=88.331</math>
Line 47: Line 47:
<math>\mathcal{F}_{dc}=\mathcal{F}_{def}+\mathcal{F}_{fg}+\mathcal{F}_{ghc}=178.25</math>
<math>\mathcal{F}_{dc}=\mathcal{F}_{def}+\mathcal{F}_{fg}+\mathcal{F}_{ghc}=178.25</math>
<br />
<br />
<math>\mathcal{R}_{dc}=\frac{l_{dc}}{\mu A_{dc}}=79577</math>
<math>\mathcal{R}_{dc}=\frac{l_{dc}}{\mu A_{dc}}=79,577</math>
<br />
<br />
<math>\Phi_{dc}=\frac{\mathcal{F}_{dc}}{\mathcal{R}_{dc}}=0.0022</math>
<math>\Phi_{dc}=\frac{\mathcal{F}_{dc}}{\mathcal{R}_{dc}}=0.0022</math>
Line 63: Line 63:
'''Conclusions:'''
'''Conclusions:'''
<br />
<br />
<math>\mathcal{F}_{Total}=\mathcal{F}_{dabc}+\mathcal{F}_{dc}+\mathcal{F}_{def}+\mathcal{F}_{fg}+\mathcal{F}_{ghc}=57041</math>
<math>\mathcal{F}_{Total}=\mathcal{F}_{dabc}+\mathcal{F}_{dc}+\mathcal{F}_{def}+\mathcal{F}_{fg}+\mathcal{F}_{ghc}=57,041</math>
<br />
<br />
<center>
<math>\mathbf{i=\frac{\mathcal{F}_{Total}}{N}=3.57 A}</math>
<math>\mathbf{i=\frac{\mathcal{F}_{Total}}{N}=3.57 A}</math>
</center>
<br />
<br />
Which is the quantity we were looking for.
<br />
Calculations were performed using the following [[Magnetic Circuit Matlab Script]].
Calculations were performed using the following [[Magnetic Circuit Matlab Script]].



Revision as of 00:27, 11 January 2010

Problem Statement

Error creating thumbnail: File missing

Problem 2.16 from Electric Machinery and Transformers, 3rd ed:

A magnetic circuit is given in Figure P2.16. What must be the current in the 1600-turn coil to set up a flux density of 0.1 T in the air-gap? All dimensions are in centimeters. Assume that magnetic flux density varies as

B=[1.5H/(750+H)]

.<ref>Guru and Huseyin, Electric Machinery and Transformers, 3rd ed. (New York: Oxford University Press, 2001), 129.</ref>

Solution

First, we note that the problem statement is incomplete. Assume that the core has a relative permeability of 500. Hence, for all magnetic sections excluding the air gap,

μ=μrμ0=(500)(4π×107)=6.2832×104

Also, as recommended in the text, we will neglect fringing.

The lengths and areas of each of the sections to be evaluated are given in the following table.

Table 1: Lengths and Areas for the pertinent secions of the magnetic circuit.
Section fg def ghc dc dabc
Length l (m) 0.01 0.555 0.555 0.48 1.4
Area A (m2) 0.0032 0.0032 0.0032 0.0096 8.0e-4

We must now work backward from the air-gap, since the value of the flux-density is given there. We need only employ the analagous equations to Ohm's Law, KVL, and KCL. All units are standard units.
Air Gap:
fg=lfgμAfg=4973.6
Φfg=BfgAfg=3.20×104
fg=fgΦfg=1.5915

Right Arms:
Φdef=Φghc=Φfg=3.20×104
def=ghc=ldefμAdef=2.7603×105
def=ghc=defΦdef=88.331

Center Column:
dc=def+fg+ghc=178.25
dc=ldcμAdc=79,577
Φdc=dcdc=0.0022

Left Arm:
Φdabc=ΦdcΦdef=0.0019
dabc=ldabcμAdabc=2.785×106
dabc=dabcΦdabc=5347.6

Conclusions:
Total=dabc+dc+def+fg+ghc=57,041
i=TotalN=3.57A

Which is the quantity we were looking for.


Calculations were performed using the following Magnetic Circuit Matlab Script.

References

<references />