Basic Op Amp circuits: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
No edit summary
Line 5: Line 5:
<br>
<br>
<br>
<br>
<br><br>
<br>
<br>
<br><br>
<br>
<br>
<br><br>
<br>
<br>
<br>
<br>
<br>
Line 16: Line 14:
[[Image:InvertingAmplifier.png|thumb|300px|Inverting Amplifier]]
[[Image:InvertingAmplifier.png|thumb|300px|Inverting Amplifier]]
*Uses negative feedback to invert and amplify voltage. Using nodal analysis at the negative terminal, the gain is found to be <math>-\frac{R_2}{R_1}</math>
*Uses negative feedback to invert and amplify voltage. Using nodal analysis at the negative terminal, the gain is found to be <math>-\frac{R_2}{R_1}</math>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
==Summing Amplifier==
==Summing Amplifier==
[[Image:Summing_Amplifier.PNG‎|thumb|300px|Summing Amplifier]]
[[Image:Summing_Amplifier.PNG‎|thumb|300px|Summing Amplifier]]
*<math>V_o=-R_f \left( \frac{V_3}{R_3}+\frac{V_2}{R_2}+\frac{V_1}{R_1}\right)</math>
*<math>V_o=-R_f \left( \frac{V_3}{R_3}+\frac{V_2}{R_2}+\frac{V_1}{R_1}\right)</math>
*If all resistances are equal, then the output voltage is the (negative) sum of the input voltages
*If all resistances are equal, then the output voltage is the (negative) sum of the input voltages
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
==Noninverting Amplifier==
==Noninverting Amplifier==
[[Image:Noninverting_Amplifier.PNG‎|thumb|300px|Noninverting Amplifier]]
[[Image:Noninverting_Amplifier.PNG‎|thumb|300px|Noninverting Amplifier]]
*<math>V_o=V_{in} \left(1+\frac{R_2}{R_1}\right)</math>
*<math>V_o=V_{in} \left(1+\frac{R_2}{R_1}\right)</math>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
==Differential Amplifier==
==Differential Amplifier==
[[Image:Differential_Amplifier_2.PNG‎|thumb|300px|Differential Amplifier ]]
[[Image:Differential_Amplifier_2.PNG‎|thumb|300px|Differential Amplifier ]]
*<math>V_o=V_2\frac{(R_1+R_f)R_g}{(R_2+R_g)R_1}-V_1\frac{R_f}{R_1}</math>
*<math>V_o=V_2\frac{(R_1+R_f)R_g}{(R_2+R_g)R_1}-V_1\frac{R_f}{R_1}</math>
*If you let <math>R_1=R_2\,</math> and <math>R_g=R_f\,</math> then the equation simplifies to <math>V_o=\frac{R_f}{R_1}(V_2-V_1)</math>
*If you let <math>R_1=R_2\,</math> and <math>R_g=R_f\,</math> then the equation simplifies to <math>V_o=\frac{R_f}{R_1}(V_2-V_1)</math>

Revision as of 15:41, 11 January 2010

Buffer Amplifier

Error creating thumbnail: File missing
Buffer Amplifier
  • Used to transfer voltage but not current to the following circuit. This amplifier can be used to negate the loading effects. No current flows through the amplifier, thus there is no voltage drop through the input resistor (going to the buffer amplifier).








Inverting Amplifier

Error creating thumbnail: File missing
Inverting Amplifier
  • Uses negative feedback to invert and amplify voltage. Using nodal analysis at the negative terminal, the gain is found to be R2R1









Summing Amplifier

Error creating thumbnail: File missing
Summing Amplifier
  • Vo=Rf(V3R3+V2R2+V1R1)
  • If all resistances are equal, then the output voltage is the (negative) sum of the input voltages













Noninverting Amplifier

Error creating thumbnail: File missing
Noninverting Amplifier
  • Vo=Vin(1+R2R1)








Differential Amplifier

Error creating thumbnail: File missing
Differential Amplifier
  • Vo=V2(R1+Rf)Rg(R2+Rg)R1V1RfR1
  • If you let R1=R2 and Rg=Rf then the equation simplifies to Vo=RfR1(V2V1)