Laplace Transform: Difference between revisions
Jump to navigation
Jump to search
Brian.Roath (talk | contribs) No edit summary |
Brian.Roath (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
Standard Form: |
|||
:<math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt </math> |
|||
Sample Functions: |
|||
:<math>F(s) = \mathcal{L} \left\{1\right\}=\int_0^{\infty} e^{-st} \,dt = </math> <math> \frac {1}{s}</math> |
:<math>F(s) = \mathcal{L} \left\{1\right\}=\int_0^{\infty} e^{-st} \,dt = </math> <math> \frac {1}{s}</math> |
||
:<math>F(s) = \mathcal{L} \left\{t^ |
:<math>F(s) = \mathcal{L} \left\{t^n\right\}=\int_0^{\infty} e^{-st} t^n \,dt = </math> <math> \frac {n!}{s^{n+1}}</math> |
||
:<math>F(s) = \mathcal{L} \left\{e^{at}\right\}=\int_0^{\infty} e^{-st} e^{at} \,dt = </math> <math> \frac {1}{s-a}</math> |
|||
:<math>F(s) = \mathcal{L} \left\{sin(\omega t)\right\}=\int_0^{\infty} e^{-st} sin(\omega t) \,dt = </math> <math> \frac {\omega}{s^2+\omega^2}</math> |
|||
:<math>F(s) = \mathcal{L} \left\{cos(\omega t)\right\}=\int_0^{\infty} e^{-st} cos(\omega t) \,dt = </math> <math> \frac {s}{s^2+\omega^2}</math> |
|||
:<math>F(s) = \mathcal{L} \left\{t^n g(t)\right\}=\int_0^{\infty} e^{-st} t^n g(t) \,dt = </math> <math> \frac {(-1)^n d^n G(s)} {ds^n} </math> for n=1,2,... |
|||
:<math>F(s) = \mathcal{L} \left\{t sin(\omega t)\right\}=\int_0^{\infty} e^{-st} t sin(\omega t) \,dt = </math> <math> \frac {2 \omega s} {(s^2+\omega^2)^2} </math> |
|||
:<math>F(s) = \mathcal{L} \left\{t cos(\omega t)\right\}=\int_0^{\infty} e^{-st} t cos(\omega t) \,dt = </math> <math> \frac {s^2-\omega^2} {(s^2+\omega^2)^2} </math> |
|||
:<math>F(s) = \mathcal{L} \left\{g(t)\right\}=\int_0^{\infty} e^{-st} g(t) \,dt = </math> <math> \frac {1} {a} G \left(\frac {s} {a}\right)</math> |
|||
:<math>F(s) = \mathcal{L} \left\{e^{at} g(t)\right\}=\int_0^{\infty} e^{-st} e^{at} g(t) \,dt = </math> <math> G(s-a) </math> |
|||
:<math>F(s) = \mathcal{L} \left\{e^{at} t^n\right\}=\int_0^{\infty} e^{-st} e^{at} t^n \,dt = </math> <math> \frac {n!} {(s-a)^{n+1}} </math> for n=1,2,... |
Revision as of 18:03, 11 January 2010
Standard Form:
Sample Functions:
- for n=1,2,...
- for n=1,2,...