|
|
Line 41: |
Line 41: |
|
:<math>F(s) = \mathcal{L} \left\{u(t-a) g(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) g(t-a) \,dt = e^{-as} G(s) </math> |
|
:<math>F(s) = \mathcal{L} \left\{u(t-a) g(t-a)\right\}=\int_0^{\infty} e^{-st} u(t-a) g(t-a) \,dt = e^{-as} G(s) </math> |
|
|
|
|
|
:<math>F(s) = \mathcal{L} \left\{g'(t)\right\}=\int_0^{\infty} g'(t) \,dt = sG(s) - g(0) </math> |
|
:<math>F(s) = \mathcal{L} \left\{g'(t)\right\}=\int_0^{\infty} e^{-st} g'(t) \,dt = sG(s) - g(0) </math> |
|
|
|
|
|
:<math>F(s) = \mathcal{L} \left\{g''(t)\right\}=\int_0^{\infty} e^{-st} g''(t) \,dt = s^2 \cdot G(s) - s \cdot g(0) - g'(0) </math> |
|
|
|
|
|
:<math>F(s) = \mathcal{L} \left\{g^{(n)}(t)\right\}=\int_0^{\infty} e^{-st} g^{(n)}(t) \,dt = s^n \cdot G(s) - s^{n-1} \cdot g(0) - s^{n-2} \cdot g'(0) - ... - g^{(n-1)}(0) </math> |
Revision as of 18:37, 11 January 2010
Standard Form:
Sample Functions:
-
-
-
-
-
-
-
-
-
-
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4
-
-
-
-
-
-