Laplace Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 72: Line 72:
:<math> \frac {6-s-s^2} {s(s+3)(s-5)} = \frac {A} {s} \frac {B} {s+3} \frac {C} {s-5}</math>
:<math> \frac {6-s-s^2} {s(s+3)(s-5)} = \frac {A} {s} \frac {B} {s+3} \frac {C} {s-5}</math>


:<math> A(s+3)(s-5)+Bs(s-5)+Cs(s+3)=-s^2-s+6</math>
:<math> A(s+3)(s-5)+Bs(s-5)+Cs(s+3)=-s^2-s+6 \,</math>


:<math> A+B+C=-1 </math>
:<math> A+B+C=-1 \,</math>
:<math> -2A-5B+3C=-1 </math>
:<math> -2A-5B+3C=-1 \,</math>
:<math> -15A=6 </math>
:<math> -15A=6 \,</math>


:<math> A=\frac {-2} {5} \qquad B=0 \qquad C=\frac {-3} {5} </math>
:<math> A=\frac {-2} {5} \qquad B=0 \qquad C=\frac {-3} {5} </math>

Revision as of 21:20, 11 January 2010

Laplace transforms are an adapted integral form of a differential equation (created and introduced by the French mathematician Pierre-Simon Laplace (1749-1827)) used to describe electrical circuits and physical processes. Adapted from previous notions given by other notable mathematicians and engineers like Joseph-Louis Lagrange (1736-1812) and Leonhard Euler (1707-1783), Laplace transforms are used to be a more efficient and easy-to-recognize form of a mathematical equation.

Standard Form

This is the standard form of a Laplace transform that a function will undergo.

F(s)={f(t)}=0estf(t)dt

Sample Functions

The following is a list of commonly seen functions of which the Laplace transform is taken. The start function is noted within the Laplace symbol {}.

F(s)={1}=0estdt= 1s
F(s)={tn}=0esttndt= n!sn+1
F(s)={eat}=0esteatdt= 1sa
F(s)={sin(ωt)}=0estsin(ωt)dt= ωs2+ω2
F(s)={cos(ωt)}=0estcos(ωt)dt= ss2+ω2
F(s)={tng(t)}=0esttng(t)dt= (1)ndnG(s)dsn forn= 1,2,...
F(s)={tsin(ωt)}=0esttsin(ωt)dt= 2ωs(s2+ω2)2
F(s)={tcos(ωt)}=0esttcos(ωt)dt= s2ω2(s2+ω2)2
F(s)={g(t)}=0estg(t)dt= 1aG(sa)
F(s)={eatg(t)}=0esteatg(t)dt=G(sa)
F(s)={eattn}=0esteattndt= n!(sa)n+1 forn= 1,2,...
F(s)={tet}=0esttetdt= 1(s+1)2
F(s)={1et/T}=0est(1et/T)dt= 1s(1+Ts)
F(s)={eatsin(ωt)}=0esteatsin(ωt)dt= ω(sa)2+ω2
F(s)={eatcos(ωt)}=0esteatcos(ωt)dt= sa(sa)2+ω2
F(s)={u(t)}=0estu(t)dt= 1s
F(s)={u(ta)}=0estu(ta)dt= eass
F(s)={u(ta)g(ta)}=0estu(ta)g(ta)dt=easG(s)
F(s)={g(t)}=0estg(t)dt=sG(s)g(0)
F(s)={g(t)}=0estg(t)dt=s2G(s)sg(0)g(0)
F(s)={g(n)(t)}=0estg(n)(t)dt=snG(s)sn1g(0)sn2g(0)...g(n1)(0)

Transfer Function

The Laplace transform of the impulse response of a circuit with no initial conditions is called the transfer function. If a single-input, single-output circuit has no internal stored energy and all the independent internal sources are zero, the transfer function is

H(s)=(responsesignal)(inputsignal).

Impedances and admittances are special cases of transfer functions.

Example

Solve the differential equation:

y2y15=6y(0)=1y(0)=3

We start by taking the Laplace transform of each term.

{y}2{y}+{y}={6}

The next step is to perform the respective Laplace transforms, using the information given above.

(s2{y}s3)2(s{y}1)15{y}={6}

Using association, the equation is rearranged:

(s22s15){y}=6ss3+2

Continuing on using the method of partial fractions, the equation is progressed:

6ss2s(s+3)(s5)=AsBs+3Cs5
A(s+3)(s5)+Bs(s5)+Cs(s+3)=s2s+6
A+B+C=1
2A5B+3C=1
15A=6
A=25B=0C=35

Plugging the above values back into the equation further up, we get:

{y}=25s+35s5

Applying anti-Laplace transforms, we get the equation:

y=1{y}25s+1{y}35s5

Applying the Laplace transforms in reverse (as the above equation utilizes inverse Laplace transforms) for the above equation, we get the solution:

y(t)=25s+35s5e5t

References

DeCarlo, Raymond A.; Lin, Pen-Min (2001), Linear Circuit Analysis, Oxford University Press, ISBN 0-19-513666-7 .

External links

Authors

Colby Fullerton

Brian Roath

Reviewed By

Read By