Exercise: Sawtooth Wave Fourier Transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
First bit of work
 
No edit summary
Line 35: Line 35:
<br />
<br />


For the sawtooth function given, we note that <math>T=1</math>, and an obvious choice for <math>c</math> is 0.  It remains, then, only to find the expression for <math>a_n</math> and <math>b_n</math>.  We proceed first to find <math>b_n</math>.  For <math>b_n</math> we can ignore the case when <math>n=0</math> because <math>\sin\,\! 0=0</math>.  Hence, we proceed for <math>n=1,2,3\dots</math>:
For the sawtooth function given, we note that <math>T=1</math>, and an obvious choice for <math>c</math> is 0 since this allows us to reduce the equation to <math>x(t)=t</math>.  It remains, then, only to find the expression for <math>a_n</math> and <math>b_n</math>.  We proceed first to find <math>b_n</math>.  For <math>b_n</math> we can ignore the case when <math>n=0</math> because <math>\sin\,\! 0=0</math>.  Hence, we proceed for <math>n=1,2,3\dots</math>:


<br />
<br />
Line 81: Line 81:
</center>
</center>


Now, for  
Now, for <math>a_n</math> we must consider the case when <math>n=0</math>. 
 
<br />
 
<center>
 
<math>a_0=\int_0^1t\ dt=\frac{t^2}{2}\bigg|_0^1=\frac{1}{2}<math>
 
<center>
 
<br />
 
For <math>n=1,2,3\dots<math>, we have
 
<br />
 
<center>
 
<math>a_n=\frac{2}{1}\int_0^1t\cos 2\pi nt\ dt</math>
 
</center>
 
<br />
 
which again is best solved using integration by parts, this time with
 
<br />
 
<center>
 
<math>u=t\qquad\Rightarrow\qquad du=dt</math>
 
<br />
 
<math>dv=\cos 2\pi nt\ dt\qquad \Rightarrow\qquad v=\frac{1}{2\pi n}\sin 2\pi nt</math>
 
<br />
 
<center>
 
so
 
<br />
 
<center>
 
<math>a_n=2\left[t\left(\frac{1}{2\pi n}\right)\sin 2\pi nt\bigg|_0^1-\int_0^1\frac{1}{2\pi n}\sin 2\pi nt\ dt\right]</math>
 
<br />
 
<math>2\left[\left(\frac{1}{2\pi n}\sin 2\pi n-0\right)-\left[-\left(\frac{1}{2\pi n}\right)^2\cos 2\pi nt\right]_0^1\right]</math>
 
<br />
 
<math>=2\left[0+\left(\frac{1}{2\pi n}\right)^2\left(\cos 2\pi n-\cos 0\right)\right]</math>
 
<br />
 
<math>=0</math>
 
</center>
 
<br />
 
Therefore, the Fourier Transform representation of the sawtooth wave given is:
 
<br />
 
<center><math>x(t)=\frac{1}{2}+\sum_{n=1}^\infty -\frac{1}{\pi n}\sin 2\pi nt</math></center>
 
<br />
 
The figures below graph the first few iterations of this solution.  The first graph shows the solution truncated after the first 100 terms of the infinite sum, as well as each of the contributing sine waves with offset.  The second figure shows the function truncated after 1, 3, 5, 10, 50, and 100 terms.


==Author==
==Author==

Revision as of 11:53, 12 January 2010

Problem Statement

Find the Fourier Tranform of the sawtooth wave given by the equation


x(t)=tt



Solution

As shown in class, the general equation for the Fourier Transform for a periodic function with period T is given by


x(t)=n=0[ancos2πntT+bnsin2πntT]


where


{an=2Tcc+Tx(t)cos2πntTdtbn=2Tcc+Tx(t)sin2πntTdtn=0,1,2,3


For the sawtooth function given, we note that T=1, and an obvious choice for c is 0 since this allows us to reduce the equation to x(t)=t. It remains, then, only to find the expression for an and bn. We proceed first to find bn. For bn we can ignore the case when n=0 because sin0=0. Hence, we proceed for n=1,2,3:


bn=2101tsin2πntdt


which is solved easiest with integration by parts, letting


u=tdu=dt


dv=sin2πntdtv=12πncos2πnt


so


bn=2[t(12πn)cos2πnt|01+12πn01cos2πntdt]


=2[(12πncos2πn0)+(12πn)2sin2πnt|01]


=2[12πn(1)+0]


=1πn

Now, for an we must consider the case when n=0.


a0=01tdt=t22|01=12<math><center><br/>For<math>n=1,2,3<math>,wehave<br/><center><math>an=2101tcos2πntdt


which again is best solved using integration by parts, this time with


u=tdu=dt


dv=cos2πntdtv=12πnsin2πnt


so


an=2[t(12πn)sin2πnt|010112πnsin2πntdt]


2[(12πnsin2πn0)[(12πn)2cos2πnt]01]


=2[0+(12πn)2(cos2πncos0)]


=0


Therefore, the Fourier Transform representation of the sawtooth wave given is:


x(t)=12+n=11πnsin2πnt


The figures below graph the first few iterations of this solution. The first graph shows the solution truncated after the first 100 terms of the infinite sum, as well as each of the contributing sine waves with offset. The second figure shows the function truncated after 1, 3, 5, 10, 50, and 100 terms.

Author

John Hawkins

Read By

Reviewed By