Class Notes 1-5-2010: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 14: Line 14:


:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math>
:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math>
:<math> \mathbf{\hat{v}} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math>
:<math> \vec{v} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math>
:<math> \mathbf{\hat{v}} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math>
:<math> \vec{v} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math>
:<math> \langle v_x, v_y\rangle</math>
:<math> \langle v_x, v_y\rangle</math>
:<math> \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} = |\mathbf{\hat{u}}| |\mathbf{\hat{v}}| \cos\theta </math>
:<math> \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} = |\mathbf{\hat{u}}| |\mathbf{\hat{v}}| \cos\theta </math>
Line 22: Line 22:
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1 & \mbox{if } i = m, \\ 0 & \mbox{else} \end{cases}</math>
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1 & \mbox{if } i = m, \\ 0 & \mbox{else} \end{cases}</math>

==Example==
==Example==
[[Image:January_5_graph_2.jpg|200px|thumb|left|Function waves with varying periods based on the function x(t) = x(t+T)]]
[[Image:January_5_graph_2.jpg|200px|thumb|left|Function waves with varying periods based on the function x(t) = x(t+T)]]

Revision as of 15:21, 17 January 2010

Modeling functions as vectors. Using function approximations, the vector path is described.

This article covers the notes given in class on January 5, 2010.

Subjects Covered

1) Linear Systems

2) Functions as Vectors


Functions graphed in vector form.



Example

Function waves with varying periods based on the function x(t) = x(t+T)

Given function:

1) Use vector analogy

External Links

Authors

Colby Fullerton

Brian Roath