An Ideal Transformer Example: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Cdxskier (talk | contribs)
No edit summary
Cdxskier (talk | contribs)
No edit summary
Line 6: Line 6:
<math>\ {e_{1}}(t)={V_{1}}\cos(\omega t)</math>
<math>\ {e_{1}}(t)={V_{1}}\cos(\omega t)</math>


<math>\ \omega=2\pi f</math>, so <math>\omega=120\pi</math>
<math>\ \omega=2\pi f</math>, so <math>\ \omega=120\pi</math>


Therefore, <math>\ {e_{1}}(t)={V_{1}}\cos(120\pi t)</math>
Therefore, <math>\ {e_{1}}(t)={V_{1}}\cos(120\pi t)</math>


Now the Thevenin equivalent impedance, <math>{Z_{th}}</math>, is found through the following steps:
Now the Thevenin equivalent impedance, <math>\ {Z_{th}}</math>, is found through the following steps:


<math>{Z_{th}} = \frac{e_{1}}{i_{1}}</math>
<math>{Z_{th}} = \frac{e_{1}}{i_{1}}</math>
Line 20: Line 20:
Now, substituting:
Now, substituting:


<math>{Z_{th}} = 3^2(5+j3)</math>
<math>\ {Z_{th}} = 3^2(5+j3)</math>


<math>=(45+j27)\Omega</math>
<math>\ =(45+j27)\Omega</math>


Since <math>{i_{1}}=\frac{e_{1}}{R_{th}}</math>,
Since <math>{i_{1}}=\frac{e_{1}}{R_{th}}</math>,


<math>{i_{1}}=\frac{120\sqrt{2}}{45+j27}</math>
<math>{i_{1}}=\frac{120\sqrt{2}}{45+j27}</math>

Revision as of 19:21, 17 January 2010

Consider a simple, transformer with two windings. Find the current provided by the voltage source.

  • Winding 1 has a sinusoidal voltage of 12020° applied to it at a frequency of 60Hz.
  • N1N2=3
  • The combined load on winding 2 is ZL=(5+j3)Ω

Solution

e1(t)=V1cos(ωt)

ω=2πf, so ω=120π

Therefore, e1(t)=V1cos(120πt)

Now the Thevenin equivalent impedance, Zth, is found through the following steps:

Zth=e1i1

=N1N2e2N2N1i2

=(N1N2)2RL

Now, substituting:

Zth=32(5+j3)

=(45+j27)Ω

Since i1=e1Rth,

i1=120245+j27