Laplace Transform of a Triangle Wave: Difference between revisions
Jump to navigation
Jump to search
Michaelvier (talk | contribs) No edit summary |
Michaelvier (talk | contribs) No edit summary |
||
Line 21: | Line 21: | ||
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{\left( -4t+4.5 \right)e^{-st}dt} \right]</math> |
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{\left( -4t+4.5 \right)e^{-st}dt} \right]</math> |
||
<math>L\left\{ F\left( t \right) \right\}=\frac{1}{1-e^{-2s}}\left[ \int_{-.5}^{.5}{4te^{-st}dt}+\int_{.5}^{1.5}{-4te^{-st}dt}+\int_{.5}^{1.5}{4.5e^{-st}dt} \right]</math> |
|||
<math>\int_{}^{}{4te^{-st}}=\; L\left\{ 4t \right\}=\frac{4}{s^{2}}</math> |
|||
<math>\int_{}^{}{-4te^{-st}}=\; L\left\{ -4t \right\}=-\frac{4}{s^{2}}</math> |
|||
<math>\int_{}^{}{4.5e^{-st}}=\; L\left\{ 4.5 \right\}=\frac{4.5}{s}</math> |
|||
==Author== |
==Author== |
||
Revision as of 11:38, 25 January 2010
This page is still in progress
Introduction
This article explains how to transform a periodic function (in this case a triangle wave). This is especially useful for analyzing circuits which contain triangle wave voltage sources.
Define F(t)
So,
Using the theorem for the transform of a periodic function,