Kurt's Assignment: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Kurt (talk | contribs)
No edit summary
Kurt (talk | contribs)
No edit summary
Line 1: Line 1:
=Common Synthesizer Waveforms=
=Common Synthesizer Waveforms=
<math>\begin{align}
        x(t) &= x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)\\
        a_0 &= \frac{1}{T}\int_0^T f(t) dt\\
        a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t) dt\\
        b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t) dt\\
      \end{align}
</math>


==Square Wave==
==Square Wave==


<math>x(t) = x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)</math>
 


<math>\begin{align}
<math>\begin{align}
         a_0 &= \frac{1}{T}\int_0^T f(t) dt\\
         a_0 &= \frac{1}{T}\int_0^{\frac{1}{2}T} H dt + \frac{1}{T}\int_{\frac{1}{2}T}^T -H dt\\
         &=\frac{1}{T}\int_0^{\frac{1}{2}T}H dt + \frac{1}{T}\int_{\frac{1}{2}T}^T 0 dt \\
         &=\frac{1}{T}\left[Ht\right]\bigg|_{t=0}^{\frac{1}{2}T} - \frac{1}{T}\left[Ht\right]\bigg|_{t={\frac{1}{2}T}}^T\\
         &=\frac{1}{T}[Ht]
         &=\frac{1}{T}H\frac{1}{2}T-0 - \left[\frac{1}{T}HT - \frac{1}{T}H\frac{1}{2}T\right]\\
        &=\frac{H}{2} - \left[H-\frac{1}{2}H\right]\\
        &=\frac{H}{2}-\frac{H}{2}\\
        &=0
\end{align}</math>
\end{align}</math>


TODO: finish
TODO: finish

Revision as of 14:32, 1 November 2010

Common Synthesizer Waveforms

x(t)=x(t+T)=a0+n=1ancos(nω0t)+bnsin(nω0t)a0=1T0Tf(t)dtan=2T0Tf(t)cos(nω0t)dtbn=2T0Tf(t)sin(nω0t)dt

Square Wave

a0=1T012THdt+1T12TTHdt=1T[Ht]|t=012T1T[Ht]|t=12TT=1TH12T0[1THT1TH12T]=H2[H12H]=H2H2=0

TODO: finish