Kurt's Assignment: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
=Common Synthesizer Waveforms= | =Common Synthesizer Waveforms= | ||
<math>\begin{align} | |||
x(t) &= x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)\\ | |||
a_0 &= \frac{1}{T}\int_0^T f(t) dt\\ | |||
a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t) dt\\ | |||
b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t) dt\\ | |||
\end{align} | |||
</math> | |||
==Square Wave== | ==Square Wave== | ||
<math>\begin{align} | <math>\begin{align} | ||
a_0 &= \frac{1}{T}\int_0^T | a_0 &= \frac{1}{T}\int_0^{\frac{1}{2}T} H dt + \frac{1}{T}\int_{\frac{1}{2}T}^T -H dt\\ | ||
&=\frac{1}{T}\ | &=\frac{1}{T}\left[Ht\right]\bigg|_{t=0}^{\frac{1}{2}T} - \frac{1}{T}\left[Ht\right]\bigg|_{t={\frac{1}{2}T}}^T\\ | ||
&=\frac{1}{T}[ | &=\frac{1}{T}H\frac{1}{2}T-0 - \left[\frac{1}{T}HT - \frac{1}{T}H\frac{1}{2}T\right]\\ | ||
&=\frac{H}{2} - \left[H-\frac{1}{2}H\right]\\ | |||
&=\frac{H}{2}-\frac{H}{2}\\ | |||
&=0 | |||
\end{align}</math> | \end{align}</math> | ||
TODO: finish | TODO: finish |
Revision as of 14:32, 1 November 2010
Common Synthesizer Waveforms
Square Wave
TODO: finish