Kurt's Assignment: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
=Common Synthesizer Waveforms= |
=Common Synthesizer Waveforms= |
||
<math>\begin{align} |
|||
⚫ | |||
a_0 &= \frac{1}{T}\int_0^T f(t) dt\\ |
|||
a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t) dt\\ |
|||
b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t) dt\\ |
|||
\end{align} |
|||
</math> |
|||
==Square Wave== |
==Square Wave== |
||
⚫ | |||
<math>\begin{align} |
<math>\begin{align} |
||
a_0 &= \frac{1}{T}\int_0^T |
a_0 &= \frac{1}{T}\int_0^{\frac{1}{2}T} H dt + \frac{1}{T}\int_{\frac{1}{2}T}^T -H dt\\ |
||
&=\frac{1}{T}\ |
&=\frac{1}{T}\left[Ht\right]\bigg|_{t=0}^{\frac{1}{2}T} - \frac{1}{T}\left[Ht\right]\bigg|_{t={\frac{1}{2}T}}^T\\ |
||
&=\frac{1}{T}[ |
&=\frac{1}{T}H\frac{1}{2}T-0 - \left[\frac{1}{T}HT - \frac{1}{T}H\frac{1}{2}T\right]\\ |
||
&=\frac{H}{2} - \left[H-\frac{1}{2}H\right]\\ |
|||
&=\frac{H}{2}-\frac{H}{2}\\ |
|||
&=0 |
|||
\end{align}</math> |
\end{align}</math> |
||
Revision as of 13:32, 1 November 2010
Common Synthesizer Waveforms
Square Wave
TODO: finish