Kurt's Assignment: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Kurt (talk | contribs)
No edit summary
Kurt (talk | contribs)
No edit summary
Line 1: Line 1:
=Common Synthesizer Waveforms=
=Common Synthesizer Waveforms=
<math>\begin{align}
<math>\begin{align}
         x(t) &= x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)\\
         x(t) &= x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)\\
Line 9: Line 10:


==Square Wave==
==Square Wave==


<math>\begin{align}
<math>\begin{align}
Line 18: Line 17:
         &=\frac{H}{2} - \left[H-\frac{1}{2}H\right]\\
         &=\frac{H}{2} - \left[H-\frac{1}{2}H\right]\\
         &=\frac{H}{2}-\frac{H}{2}\\
         &=\frac{H}{2}-\frac{H}{2}\\
        &=0
\end{align}</math>
<math>\begin{align}
        a_n &= \frac{2}{T}\int_0^{\frac{1}{2}T} H\cos(n\omega_0t) dt + \frac{2}{T}\int_{\frac{1}{2}T}^T -H\cos(n\omega_0t) dt\\
        &=\frac{2}{T}\left[\frac{H}{n\omega_0}\sin(n\omega_0t)\right]_0^{\frac{1}{2}T} + \frac{2}{T}\left[\frac{-H}{n\omega_0}\sin(n\omega_0t)\right]_{\frac{1}{2}T}^T\\
        &=\frac{2}{T}\left[\frac{H}{n\frac{2\pi}{T}}\sin(n\pi)\right]
       
         &=0
         &=0
\end{align}</math>
\end{align}</math>


TODO: finish
TODO: finish

Revision as of 14:44, 1 November 2010

Common Synthesizer Waveforms

x(t)=x(t+T)=a0+n=1ancos(nω0t)+bnsin(nω0t)a0=1T0Tf(t)dtan=2T0Tf(t)cos(nω0t)dtbn=2T0Tf(t)sin(nω0t)dt

Square Wave

a0=1T012THdt+1T12TTHdt=1T[Ht]|t=012T1T[Ht]|t=12TT=1TH12T0[1THT1TH12T]=H2[H12H]=H2H2=0


an=2T012THcos(nω0t)dt+2T12TTHcos(nω0t)dt=2T[Hnω0sin(nω0t)]012T+2T[Hnω0sin(nω0t)]12TT=2T[Hn2πTsin(nπ)]=0

TODO: finish