Kurt's Assignment: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Kurt (talk | contribs)
No edit summary
Kurt (talk | contribs)
No edit summary
Line 1: Line 1:
=Common Synthesizer Waveforms=
=Common Synthesizer Waveforms=
Many synthesizers employ a variety of waveforms to produce varied sounds. The most common waveform is the sine wave. However, in additive synthesis, multiple waveforms can be added together to create a different waveform with different characteristics. The basis for this form of synthesis is the Fourier series:


<math>\begin{align}
<math>\begin{align}
Line 9: Line 10:
</math>
</math>


The four basic waveforms are Sine Waves, Square Waves, Triangle Waves, and Sawtooth Waves.
==Square Wave==
==Square Wave==
By inspection of the waveform, the DC component of the wave will be 0. Also, since the waveform is odd, a<sub>n</sub> will be 0. Here is the proof:


<math>\begin{align}
<math>\begin{align}
Line 24: Line 28:
         a_n &= \frac{2}{T}\int_0^{\frac{1}{2}T} H\cos(n\omega_0t) dt + \frac{2}{T}\int_{\frac{1}{2}T}^T -H\cos(n\omega_0t) dt\\
         a_n &= \frac{2}{T}\int_0^{\frac{1}{2}T} H\cos(n\omega_0t) dt + \frac{2}{T}\int_{\frac{1}{2}T}^T -H\cos(n\omega_0t) dt\\
         &=\frac{2}{T}\left[\frac{H}{n\omega_0}\sin(n\omega_0t)\right]_0^{\frac{1}{2}T} + \frac{2}{T}\left[\frac{-H}{n\omega_0}\sin(n\omega_0t)\right]_{\frac{1}{2}T}^T\\
         &=\frac{2}{T}\left[\frac{H}{n\omega_0}\sin(n\omega_0t)\right]_0^{\frac{1}{2}T} + \frac{2}{T}\left[\frac{-H}{n\omega_0}\sin(n\omega_0t)\right]_{\frac{1}{2}T}^T\\
         &=\frac{2}{T}\left[\frac{H}{n\frac{2\pi}{T}}\sin(n\pi)\right]
         &=\frac{2}{T}\left[\frac{H}{n\frac{2\pi}{T}}\sin(n\frac{2\pi}{T}\frac{1}{2}T)-0\right] + \frac{2}{T}\left[-0+\frac{H}{n\frac{2\pi}{T}}\sin(n\frac{2pi}{T}\frac{1}{2}T)\right]\\
          
         &=\frac{2}{T}\left[\frac{TH}{2\pi n}\underbrace{\sin(n\pi)}_\text{0}\right] + \frac{2}{T}\left[\frac{TH}{2\pi n}\underbrace{\sin(n\pi)}_\text{0}\right]\\
         &=0
         &=0
\end{align}</math>
\end{align}</math>


TODO: finish
 
This just leaves the sin component of the waveform found below.
 
<math>\begin{align}
        b_n &= \frac{2}{T}\int_0^{\frac{1}{2}T} H\sin(n\omega_0t) dt + \frac{2}{T}\int_{\frac{1}{2}T}^T -H\sin(n\omega_0t) dt\\
        &=\frac{2}{T}\left[\frac{-H}{n\omega_0}\cos(n\omega_0t)\right]_0^{\frac{1}{2}T} + \frac{2}{T}\left[\frac{H}{n\omega_0}\cos(n\omega_0t)\right]_{\frac{1}{2}T}^T\\
        &=\frac{2}{T}\left[-\frac{H}{n\frac{2\pi}{T}}\cos(n\frac{2\pi}{T}\frac{1}{2}T)+\frac{H}{n\frac{2\pi}{T}}\right] + \frac{2}{T}\left[\frac{H}{n\frac{2\pi}{T}}\cos(n\frac{2\pi}{T}T)-\frac{H}{n\frac{2\pi}{T}}\cos(n\frac{2\pi}{T}\frac{1}{2}T)\right]\\
        &=\frac{2}{T}\left[-\frac{TH}{2\pi n}\cos(n\pi)+\frac{TH}{2\pi n}\right] + \frac{2}{T}\left[\frac{TH}{2\pi n}\underbrace{\cos(2 \pi n)}_\text{1}-\frac{TH}{2\pi n}\cos(n\pi)\right]\\
        &=-\frac{H}{\pi n}\cos(n\pi)+\frac{H}{\pi n} + \frac{H}{\pi n}-\frac{H}{\pi n}\cos(n\pi)\\
        &=\frac{2H}{\pi n}-\frac{2H}{\pi n}\cos(n\pi)\\
\end{align}</math>
 
 
Finally, resulting in the Fourier series for a Square Wave.
 
<math>\text{Square Wave Fourier Series: }x(t) = x(t+T) = \sum_{n=1}^\infty \left(\frac{2H}{\pi n}-\frac{2H}{\pi n}\cos(n\pi)\right) \sin(n\omega_0t)  </math>
 
==Triangle Wave==
 
 
==Sawtooth Wave==

Revision as of 15:29, 1 November 2010

Common Synthesizer Waveforms

Many synthesizers employ a variety of waveforms to produce varied sounds. The most common waveform is the sine wave. However, in additive synthesis, multiple waveforms can be added together to create a different waveform with different characteristics. The basis for this form of synthesis is the Fourier series:

x(t)=x(t+T)=a0+n=1ancos(nω0t)+bnsin(nω0t)a0=1T0Tf(t)dtan=2T0Tf(t)cos(nω0t)dtbn=2T0Tf(t)sin(nω0t)dt


The four basic waveforms are Sine Waves, Square Waves, Triangle Waves, and Sawtooth Waves.

Square Wave

By inspection of the waveform, the DC component of the wave will be 0. Also, since the waveform is odd, an will be 0. Here is the proof:

a0=1T012THdt+1T12TTHdt=1T[Ht]|t=012T1T[Ht]|t=12TT=1TH12T0[1THT1TH12T]=H2[H12H]=H2H2=0


an=2T012THcos(nω0t)dt+2T12TTHcos(nω0t)dt=2T[Hnω0sin(nω0t)]012T+2T[Hnω0sin(nω0t)]12TT=2T[Hn2πTsin(n2πT12T)0]+2T[0+Hn2πTsin(n2piT12T)]=2T[TH2πnsin(nπ)0]+2T[TH2πnsin(nπ)0]=0


This just leaves the sin component of the waveform found below.

bn=2T012THsin(nω0t)dt+2T12TTHsin(nω0t)dt=2T[Hnω0cos(nω0t)]012T+2T[Hnω0cos(nω0t)]12TT=2T[Hn2πTcos(n2πT12T)+Hn2πT]+2T[Hn2πTcos(n2πTT)Hn2πTcos(n2πT12T)]=2T[TH2πncos(nπ)+TH2πn]+2T[TH2πncos(2πn)1TH2πncos(nπ)]=Hπncos(nπ)+Hπn+HπnHπncos(nπ)=2Hπn2Hπncos(nπ)


Finally, resulting in the Fourier series for a Square Wave.

Square Wave Fourier Series: x(t)=x(t+T)=n=1(2Hπn2Hπncos(nπ))sin(nω0t)

Triangle Wave

Sawtooth Wave