Martinez's Fourier Assignment: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
<math>\begin{align} | <math>\begin{align} | ||
a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t)\, dt\\ | a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t)\, dt\\ | ||
b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t)\, dt\ | b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t)\, dt\\ | ||
\end{align} | \end{align} |
Revision as of 01:27, 13 December 2010
Solve for a3 for the waveform below:
T=6 seconds
<math>\begin{align}
a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t)\, dt\\ b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t)\, dt\\
\end{align}