Martinez's Fourier Assignment: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t)\, dt\\ | a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t)\, dt\\ | ||
b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t)\, dt\\ | b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t)\, dt\\ | ||
\because | \because \T=6, dt\\ | ||
\end{align} | \end{align} |
Revision as of 01:31, 13 December 2010
Solve for a3 for the waveform below:
T=6 seconds
<math>\begin{align}
a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t)\, dt\\ b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t)\, dt\\
\because \T=6, dt\\ \end{align}