Fourier transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
<math>
<math>


x(t)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt


</math>
</math>
Line 10: Line 10:
This means that <math> \beta(t)=0 </math> for some <math> T_\alpha < \left | t \right | </math>
This means that <math> \beta(t)=0 </math> for some <math> T_\alpha < \left | t \right | </math>
<br><br>
<br><br>
Now let's make a periodic function <math> \gamma(t) </math> by repeating <math> \beta(t) </math> with a fundamental period <math> T_\zeta </math>.
Now let's make a periodic function
<math>
Note that <math> \lim_{T_\zeta \to \infty}\gamma(t)=\beta(t) </math>
\gamma(t)
</math>
by repeating
<math>
\beta(t)
</math>
with a fundamental period
<math>
T_\zeta
</math>.
Note that
<math>
\lim_{T_\zeta \to \infty}\gamma(t)=\beta(t)
</math>
<br>
<br>
The Fourier Series representation of <math> \gamma(t) </math> is
The Fourier Series representation of <math> \gamma(t) </math> is
<br>
<br>
<math>
<math> \gamma(t)=\sum_{k=-\infty}^\infty \alpha_k e^{j2\pi fkt} </math> where <math> f={1\over T_\zeta}
\gamma(t)=\sum_{k=-\infty}^\infty \alpha_k e^{j2\pi fkt}
</math> <br>and <math> \alpha_k={1\over T_\zeta}\int_{-{T_\zeta\over 2}}^{{T_\zeta\over 2}} \gamma(t) e^{-j2\pi kt}\,dt</math>
</math>
where
<math>
f={1\over T_\zeta}
</math>
<br>and
<math>
\alpha_k={1\over T_\zeta}\int_{-{T_\zeta\over 2}}^{{T_\zeta\over 2}} \gamma(t) e^{-j2\pi kt}\,dt
</math>
<br>
<br>
<math> \alpha_k </math> can now be rewritten as <math> \alpha_k={1\over T_\zeta}\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi kt}\,dt </math>
<math> \alpha_k </math> can now be rewritten as
<math>
\alpha_k={1\over T_\zeta}\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi kt}\,dt
</math>
<br>From our initial identity then, we can write <math> \alpha_k </math> as
<br>From our initial identity then, we can write <math> \alpha_k </math> as
<math>
<math>
\alpha_k={1\over T_\zeta}\Beta(kf)
\alpha_k={1\over T_\zeta}\Beta(kf)
</math>
</math>
<br> and
<br> and
<math>
<math>
\gamma(t)
\gamma(t)
</math>
</math>
becomes
becomes
<math>
<math>
\gamma(t)=\sum_{k=-\infty}^\infty {1\over T_\zeta}\Beta(kf) e^{j2\pi fkt}
\gamma(t)=\sum_{k=-\infty}^\infty {1\over T_\zeta}\Beta(kf) e^{j2\pi fkt}
</math>
<br>
Now remember that
<math>
\beta(t)=\lim_{T_\zeta \to \infty}\gamma(t)
</math>
and
<math>
{1\over {T_\zeta}} = f.
</math>
<br>
Which means that
<math>
\beta(t)=\lim_{f \to 0}\gamma(t)=\lim_{f \to 0}\sum_{k=-\infty}^\infty f \Beta(kf) e^{j2\pi fkt}
</math>
<br>
Which is just to say that
<math>
\beta(t)=\int_{-\infty}^\infty f \Beta(f) e^{j2\pi fkt}\,df
</math>
<br>
<br>
So we have that the Fourier Transform of
<math>
\beta(t)
</math>
is
<math>
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt
</math>
</math>

Revision as of 10:21, 9 December 2004

An initially identity that is useful:

Suppose that we have some function, say , that is nonperiodic and finite in duration.
This means that for some

Now let's make a periodic function by repeating with a fundamental period . Note that
The Fourier Series representation of is
where
and
can now be rewritten as
From our initial identity then, we can write as
and becomes
Now remember that and
Which means that
Which is just to say that

So we have that the Fourier Transform of is