Homework: Difference between revisions
Jump to navigation
Jump to search
Line 20: | Line 20: | ||
<math> |
<math> |
||
x(t)=\sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) |
x(t)=\sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) |
||
</math> |
|||
<br> |
|||
<b>Solution:</b> |
|||
<br> |
|||
<math> |
|||
\begin{matrix} |
|||
\left \langle x(t) \vert x(t) \right \rangle & = & \int_{-\infty}^{\infty} x(t)^{*} x(t)\,dt |
|||
\\ \ & = & \int_{-\infty}^{\infty} \left | x(t) \right |^2\,dt |
|||
\end{matrix} |
|||
</math> |
|||
<br> |
|||
<math> |
|||
x(t)=\sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) |
|||
</math> |
|||
<br> |
|||
<math> |
|||
\begin{matrix} |
|||
\Rightarrow \left \langle x(t) \vert x(t) \right \rangle & = & |
|||
\left \langle \sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) \vert \sum_{l=-\infty}^{\infty} x(lT)\phi_l(t) \right \rangle |
|||
\\ \ & = & \sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty} x(kT)x(lT) |
|||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle |
|||
\end{matrix} |
|||
</math> |
</math> |
Revision as of 08:25, 10 December 2004
Homework #9
Problem Statement:
Show that, for a bandwidth limited signal ( with )
And find c.
Equations:
Solution: