Fourier transform: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Guenan (talk | contribs)
Guenan (talk | contribs)
No edit summary
Line 87: Line 87:
<math>
<math>
\mathcal{F}^{-1}[\Beta(f)]=\beta(t)=\int_{-\infty}^\infty \Beta(f) e^{j2\pi fkt}\,df
\mathcal{F}^{-1}[\Beta(f)]=\beta(t)=\int_{-\infty}^\infty \Beta(f) e^{j2\pi fkt}\,df
</math>
==Some Useful Fourier Transform Identities==
<math>
\hbox to111
</math>
</math>
==A Second Approach to Fourier Transforms==
==A Second Approach to Fourier Transforms==

Revision as of 09:47, 10 December 2004

From the Fourier Transform to the Inverse Fourier Transform

An initially identity that is useful: X(f)=x(t)ej2πftdt

Suppose that we have some function, say β(t), that is nonperiodic and finite in duration.
This means that β(t)=0 for some Tα<|t|

Now let's make a periodic function γ(t) by repeating β(t) with a fundamental period Tζ. Note that limTζγ(t)=β(t)
The Fourier Series representation of γ(t) is
γ(t)=k=αkej2πfkt where f=1Tζ
and αk=1TζTζ2Tζ2γ(t)ej2πktdt
αk can now be rewritten as αk=1Tζβ(t)ej2πktdt
From our initial identity then, we can write αk as αk=1TζB(kf)
and γ(t) becomes γ(t)=k=1TζB(kf)ej2πfkt
Now remember that β(t)=limTζγ(t) and 1Tζ=f.
Which means that β(t)=limf0γ(t)=limf0k=fB(kf)ej2πfkt
Which is just to say that β(t)=B(f)ej2πfktdf

So we have that [β(t)]=B(f)=β(t)ej2πftdt
Further 1[B(f)]=β(t)=B(f)ej2πfktdf

Some Useful Fourier Transform Identities

Failed to parse (syntax error): {\displaystyle \hbox to111 }

A Second Approach to Fourier Transforms