Signals and systems/GF Fourier: Difference between revisions
Jump to navigation
Jump to search
Line 8: | Line 8: | ||
==Determining the coefficient <math> \alpha_n \,</math> == |
==Determining the coefficient <math> \alpha_n \,</math> == |
||
<math> x(t) = \sum_{n=-\infty}^\infty \alpha_n e^{{j2\pi nt}/T} \, </math> |
<math> x(t) = \sum_{n=-\infty}^\infty \alpha_n e^{{j2\pi nt}/T} \, </math> |
||
*The definition of the Fourier series |
|||
⚫ | |||
<math> \int_{-T/2}^{T/2} x(t) |
<math> \int_{-T/2}^{T/2} x(t)\, dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi nt}/T} dt</math> |
||
⚫ | |||
⚫ | <math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} = T\frac{e^{j\pi(n-m)}-e^{-j\pi(n-m)}}{j2\pi(n-m)} = T \frac{\sin\pi(n-m)}{\pi(n-m)} = \begin{Bmatrix} T, n=m \\ 0, n\ne m \end{Bmatrix} = T\delta_{n,m}</math> |
||
<math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi nt}/T}e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \int_{-T/2}^{T/2} e^{{j2\pi (n-m)t}/T} dt</math> |
|||
*Multiply by the complex conjugate |
|||
⚫ | <math> \int_{-T/2}^{T/2} x(t) e^{{-j2\pi mt}/T} dt = \sum_{n=-\infty}^\infty \alpha_n \frac{Te^{{j2\pi (n-m)t}/T}}{{j2\pi (n-m)}} \bigg|_{-T/2}^{T/2} = T\frac{e^{j\pi(n-m)}-e^{-j\pi(n-m)}}{j2\pi(n-m)} = T \frac{\sin\pi(n-m)}{\pi(n-m)} = \begin{Bmatrix} T, n=m \\ 0, n\ne m \end{Bmatrix} = T\delta_{n,m}</math> |
||
*Using L'Hopitals to evaluate the <math>\frac{T\cdot 0}{0}</math> case. Note that n & m are integers |
|||
== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation == |
== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation == |
Revision as of 21:12, 29 October 2006
Fourier series
The Fourier series is used to analyze arbitrary periodic functions by showing them as a composite of sines and cosines.
A function is considered periodic if for .
The exponential form of the Fourier series is defined as
Determining the coefficient
- The definition of the Fourier series
- Integrating both sides for one period. The range of integration is arbitrary, but using scales nicely when extending the Fourier series to a non-periodic function
- Multiply by the complex conjugate
- Using L'Hopitals to evaluate the case. Note that n & m are integers
Notation
Linear Time Invariant Systems
Changing Basis Functions
Identities