Vector weighting functions: Difference between revisions
No edit summary |
|||
Line 12: | Line 12: | ||
<math> \vec \bold u \bullet \vec \bold v = \sum_{k=1}^3 u_k \vec \bold a_k \bullet \sum_{m=1}^3 v_m \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3 v_m \vec \bold a_k \bullet \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3 v_m w_k\delta_{k,m} = \sum_{k=1}^3 w_k v_k u_k </math>. |
<math> \vec \bold u \bullet \vec \bold v = \sum_{k=1}^3 u_k \vec \bold a_k \bullet \sum_{m=1}^3 v_m \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3 v_m \vec \bold a_k \bullet \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3 v_m w_k\delta_{k,m} = \sum_{k=1}^3 w_k v_k u_k </math>. |
||
You can interpret the <math>w_k</math> as a weighting factor between the different directions so that different directions all end up in the units you would like. For example, suppose that the x and y directions were measured in meters, and the z direction was measured in centimeters, and you would like to use meters as your base unit. You could either convert the z dimensions to meters (probably simpler) or use a weighting function <math> w_x = 1</math>, <math>w_y = 1</math> and <math> w_z = 10^{-6} </math>. |
Revision as of 10:43, 24 September 2004
Orthogonal but not Orthonormal Basis Sets
Suppose we have two vectors from an orthonormal system, and . Taking the inner product of these vectors, we get
What if they aren't from a normalized system, so that
where the is the square of the length of and the symbol is one when k = n and zero otherwise? Well the general inner product of and becomes
.
You can interpret the as a weighting factor between the different directions so that different directions all end up in the units you would like. For example, suppose that the x and y directions were measured in meters, and the z direction was measured in centimeters, and you would like to use meters as your base unit. You could either convert the z dimensions to meters (probably simpler) or use a weighting function , and .